Главная | Обратная связь
МегаЛекции

Пакет решения задач линейной алгебры linatg

Пакет решения задач линейной алгебры linalg

Состав пакета linalg

Несомненно, что уникальной возможностью системы Maple 7, как и других систем компьютерной алгебры, является возможность решения задач линейной алгебры в символьном (формульном, аналитическом) виде. Однако такое решение представляет скорее теоретический, чем практический интерес, поскольку даже при небольших размерах матриц (уже при 4-5 строках и столбцах) символьные результаты оказываются очень громоздкими и труднообозримыми. Они полезны только при решении специфических аналитических задач, например с разреженными матрицами, у которых большинство элементов имеют нулевые значения.

Поэтому разработчики Maple 7 были вынуждены реализовать в своей системе численные методы решения задач линейной алгебры, которые широко используются в основных сферах ее приложения — математическом моделировании систем и устройств, расчетах в электротехнике, механике, астрономии и т. д.

В ядро Maple 7, как отмечалось, введены очень скромные и минимально необходимые средства для решения задач линейной алгебры. Основной упор в их реализации сделан на подключаемые пакеты. Основным из них, унаследованным от предшествующих реализаций системы, является пакет решения задач линейной алгебры Unalg. Это один из самых обширных и мощных пакетов в области решения задач линейной алгебры. Он содержит свыше ста функций:

> with(linalg);

Warning, the names fibonacci, inverse and multiply have been redefined Warning, the protected names norm and trace have been redefined and unprotected[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, coldim, colspace, colspan, companion, concat, cond, copyinto, crossprod, curl, definite, delcols, delrows, det, diag, diverge, dotprod, eigenvals, eigenvalues, eigenvectors, eigenvects, entermatrix, equal, exponential, extend, ffgausselimfifibonacci,forwardsub,frobenius, gausselim, gaussjord, geneqns, genmatrix, grad, hadamard, hermite, hessian, hilbert,htranspose, thermite, indexfunc, innerprod, intbasis, inverse, ismith, issimilar, iszerojacobian, Jordan, kernel, laplacian, leastsqrs, linsolve,matadd, matrix, minor, minpoly, mulcol, /им/row,multiply, norm, normalize, nullspace, orthog, permanent, pivot, potential, randmatrix, randvector, rank, ratform, row, rowdim, rowspace, rowspan, rref, scalarmul, singularvals, smith, stackmatrix, submatrix, subvector, sumbasis, swapcol, swaprow, Sylvester, toeplitz, trace, transpose, vandermonde, vecpotent, vectdim, vector, wronskian]

Ниже указано назначение тех функций пакета linalg, которые подробно не описаны:

  • addcol — добавляет к одному из столбцов другой столбец, умноженный на некоторое число;
  • addrow — добавляет к одной из строк другую строку, умноженную на некоторое число;
  • angle — вычисляет угол между векторами;
  • augment — объединяет две или больше матриц по горизонтали;
  • backsub — реализует метод обратной подстановки при решении системы линейных уравнений (см. также forwardsub);
  • band — создает ленточную матрицу;
  • basis — находит базис векторного пространства;
  • bezout — создает Bezout-матрицу двух полиномов; . г
  • BlockDiagonal — создает блок-диагональную матрицу;
  • blockmatrix — создает блок-матрицу;
  • cholesky — декомпозиция Холесского для квадратной положительно определенной матрицы;
  • charmat — создает характеристическую матрицу (charmat(M,v) — матрица, вычисляемая как v E-M);
  • charpoly — возвращает характеристический полином матрицы;
  • colspace — вычисляет базис пространства столбцов;
  • colspan — находит базис линейной оболочки столбцов матрицы;
  • companion — вычисляет сопровождающую матрицу, ассоциированную с полиномом;
  • cond — вычисляет число обусловленности матрицы (cond(M) есть величина norm(M) norm(М-1);
  • curl — вычисляет ротор вектора;
  • definite — тест на положительную (отрицательную) определенность матрицы;
  • diag — создает блок-диагональную матрицу;
  • diverge — вычисляет дивергенцию векторной функции;
  • eigenvals — вычисляет собственные значения матрицы;
  • eigenvects — вычисляет собственные векторы матрицы;
  • equal — определяет, являются ли две матрицы равными;
  • exponential — создает экспоненциальную матрицу;
  • ffgausselim — свободное от дробей Гауссово исключение в матрице;
  • fibonacci — матрица Фибоначчи;
  • forwardsub — реализует метод прямой подстановки при решении системы линейных уравнений (например, для матрицы L и вектора b
  • forwardsub(L, b) возвращает вектор решения х системы линейных уравнений L-x=b);
  • frobenius — вычисляет форму Фробениуса (Frobenius) матрицы;
  • gausselim — Гауссово исключение в матрице;
  • gaussjord — синоним для rref (метод исключения Гаусса—Жордана);
  • geneqns — генерирует элементы матрицы из уравнений;
  • genmatrix — генерирует матрицу из коэффициентов уравнений;
  • grad — градиент векторного выражения;
  • GramSchmidt — вычисляет ортогональные векторы;
  • hadamard — вычисляет ограничение на коэффициенты детерминанта;
  • hessian — вычисляет гессиан-матрицу выражения;
  • hilbert — создает матрицу Гильберта;
  • htranspose — находит эрмитову транспонированную матрицу;
  • ihermite — целочисленная эрмитова нормальная форма;
  • indexfunc — определяет функцию индексации массива;
  • Innerprod — вычисляет векторное произведение;
  • Intbasis — определяет базис пересечения пространств;
  • ismith — целочисленная нормальная форма Шмитта;
  • iszero — проверяет, является ли матрица ноль-матрицей;
  • jacobian —' вычисляет якобиан векторной функции;
  • JordanBlock — возвращает блок-матрицу Жордана;
  • kernel — находит базис ядра преобразования, соответствующего данной матрице;
  • laplacian — вычисляет лапласиан;
  • leastsqrs — решение уравнений по методу наименьших квадратов;
  • linsolve — решение линейных уравнений;
  • LudeComp — осуществляет LU-разложение;
  • minpoly — вычисляет минимальный полином матрицы;
  • mulcol — умножает столбец матрицы на заданное выражение;
  • mulrow — умножает строку матрицы на заданное выражение;
  • multiply — перемножение 'матриц или матрицы и вектора;
  • normalize — нормализация вектора;
  • orthog — тест на ортогональность матрицы;
  • permanent — вычисляет перманент матрицы — определитель, вычисляемый без перестановок;
  • pivot — вращение относительно элементов матрицы;
  • potential — вычисляет потенциал векторного поля;
  • Qrdecomp — осуществляет QR-разложение;
  • randmatrix — генерирует случайные матрицы;
  • randvector — генерирует случайные векторы;
  • ratform — вычисляет рациональную каноническую форму;
  • references — выводит список основополагающих работ по линейной алгебре;
  • rowspace — вычисляет базис пространства строки;
  • rowspan — вычисляет векторы охвата для места столбца;
  • rref — реализует преобразование Гаусса-Жордана матрицы;
  • scalarmul — умножение матрицы или вектора на заданное выражение;
  • singval — вычисляет сингулярное значение квадратной матрицы;
  • singularvals — возвращает список сингулярных значений квадратной матрицы;
  • smith — вычисляет Шмиттову нормальную форму матрицы;
  • submatrix — извлекает указанную подматрицу из матрицы;
  • subvector — извлекает указанный вектор из матрицы;
  • sumbasis — определяет базис объединения системы векторов;
  • swapcol — меняет местами два столбца в матрице;
  • swaprow — меняет местами две строки в матрице;
  • sylvester — создает матрицу Сильвестра из двух полиномов;
  • toeplitz — создает матрицу Теплица;
  • trace — возвращает след матрицы;
  • vandermonde — создает вандермондову матрицу;
  • vecpotent — вычисляет векторный потенциал;
  • vectdim — определяет размерность вектора;
  • wronskian — вронскиан векторных функций.

Ниже мы рассмотрим более подробно наиболее часто используемые функции из этого пакета. С деталями синтаксиса (достаточно разнообразного) для каждой из указанных функций можно ознакомиться в справочной системе Maple. Для этого достаточно использовать команду

?name; где name — имя функции (из приведенного списка).





©2015- 2017 megalektsii.ru Права всех материалов защищены законодательством РФ.