Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Синтетическая теория эволюции




Размещено 23 Июня, 2011 by admin

Тот факт, что теория Дарвина первостепенное значение в отношении появления новых видов уделяет экологическим факторам, не помешало наибольшему развитию изучения генетических аспектов изменчивости и наследственности.

Развитие данного направления привело к тому, что на свет появилась так называемая синтетическая теория эволюции, в основе которой лежат принципы неодарвинизма. Важной ее особенностью является ориентация по преимуществу на генетические механизмы появления эволюционных изменений.

Наиболее традиционный вид этой теории эволюции фактически игнорирует экологические эволюционные аспекты, и весь эволюционный процесс сводится к отбору мутаций и их последующему распределению в популяциях.

То, что синтетическая теория эволюции признает за естественным отбором главенство среди эволюционных факторов, подлинная причина возникновения и закрепления признаков определяется не отбором, а рекомбинацией генов.

В соответствии с общепринятым мнением, синтетическая теория эволюции явила собой новый шаг по отношению к оригинальной теории Дарвина и заключает в себе объединение взглядов Дарвина с данными современной генетики, палеонтологии, экологии и ряда иных биологических дисциплин.

Но с точки зрения исторического анализа явствует, что синтетическая теория не может считаться вполне самостоятельным эволюционным учением. Это всего лишь одно из возможных направлений развития эволюционного учения Дарвина, которое связано с более пристальным изучением генетических эволюционных факторов.

Реальный синтез новейших эволюционных данных станет возможен лишь тогда, когда будут наиболее полно изучены вкупе с генетическими факторами экологические эволюционные факторы, которые составляют основу эволюционного учения Дарвина.

Существует ряд причин, повлиявших на развитие преимущественно генетических эволюционных факторов после создания теории Дарвина. Например, одна из них вызвана тем, что изучение в полном объеме экологических факторов подразумевает исследование сложных и разнообразных взаимоотношений организмов друг с другом и с окружающей средой.

В то время, когда Дарвин создавал свое эволюционное учение, экология, как наука, находилась в зачаточном состоянии, и представление об экологических механизмах эволюции у Дарвина было в основном умозрительным. Потребовалось немало времени и усилий для получения фактического подтверждения теоретических конструкций Дарвина.

И только сегодня, когда экология смогла достичь такого уровня научных исследований, при котором открывается возможность объективного анализа экологических эволюционных факторов.

Генетика, являясь по сравнению с экологией более узкой научной дисциплиной, имеет возможность оперативно решать множество стоящих перед ней проблем, используя экспериментальные методы исследования.

Другой важной причиной доминирования в эволюционной биологии генетических исследований является то, что после появления эволюционной теории Дарвина, ее критика была направлена, в первую очередь, на аспекты изменчивости и наследственности.

Остротой данной проблемы было привлечено пристальное внимание ученых, что и обусловило быстрое развитие в последующем эволюционно-генетических исследований.

Синтетическая теория эволюции имеет весьма важное системное дополнение – эпигенетическую теорию, рассматривающую в качестве главного объекта эволюции онтогенез организма.

 

 

96) Происхождение жизни: гипотезы панспермии и абиогенного происхождения жизни. Главные этапы возникновения и развития жизни.

Биохимическая теория

Первую научную теорию относительно происхождения живых организмов на Земле создал советский биохимик А.И. Опарин (1894–1980). В 1924 г. он опубликовал работы, в которых изложил представления о том, как могла возникнуть жизнь на Земле. Согласно этой теории, жизнь возникла в специфических условиях древней Земли и рассматривается Опариным как закономерный результат химической эволюции соединений углерода во Вселенной.

 

По Опарину, процесс, приведший к возникновению жизни на Земле, может быть разделен на три этапа:

  • возникновение органических веществ;
  • образование из более простых органических веществ биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов и др.);
  • возникновение примитивных самовоспроизводящихся организмов.

Теория биохимической эволюции имеет наибольшее количество сторонников среди современных учёных. Земля возникла около пяти миллиардов лет назад; первоначально температура её поверхности была очень высокой (до нескольких тысяч градусов). По мере её остывания образовались твёрдая поверхность (земная кора — литосфера).

 

Атмосфера, первоначально состоявшая из лёгких газов (водород, гелий), не могла эффективно удерживаться недостаточно плотной Землёй, и эти газы заменялись более тяжёлыми: водяным паром, углекислым газом, аммиаком и метаном. Когда температура Земли опустилась ниже 100ºС, водяной пар начал конденсироваться, образуя мировой океан. В это время, в соответствии с представлениями А.И. Опарина, состоялся абиогенный синтез, то есть в первичных земных океанах, насыщенных разными простыми химическими соединениями, «в первичном бульоне» под влиянием вулканического тепла, разрядов молний, интенсивной ультрафиолетовой радиации и других факторов среды начался синтез более сложных органических соединений, а затем и биополимеров. Образованию органических веществ способствовало отсутствие живых организмов — потребителей органики — и главного окислителя — кислорода. Сложные молекулы аминокислот случайно объединялись в пептиды, которые, в свою очередь, создали первоначальные белки. Из этих белков синтезировались первичные живые существа микроскопических размеров.

 

Наиболее сложной проблемой в современной теории эволюции является превращение сложных органических веществ в простые живые организмы. Опарин полагал, что решающая роль в превращении неживого в живое принадлежит белкам. По-видимому, белковые молекулы, притягивая молекулы воды, образовывали коллоидные гидрофильные комплексы. Дальнейшее слияние таких комплексов друг с другом приводило к отделению коллоидов от водной среды (коацервация). На границе между коацерватом (от лат. coacervus — сгусток, куча) и средой выстраивались молекулы липидов — примитивная клеточная мембрана. Предполагается, что коллоиды могли обмениваться молекулами с окружающей средой (прообраз гетеротрофного питания) и накапливать определённые вещества. Ещё один тип молекул обеспечивал способность к самовоспроизведению. Система взглядов А.И. Опарина получила название «коацерватная гипотеза».

 

Гипотеза Опарина была лишь первым шагом в развитии биохимических представлений о возникновении жизни. Следующим шагом стали эксперименты Л.С. Миллера, который в 1953 году показал, как из неорганических составляющих первичной земной атмосферы под воздействием электрических разрядов и ультрафиолетового излучения могут образовываться аминокислоты и другие органические молекулы.

 

Академик РАН В.Н. Пармон и ряд других ученых предлагают различные модели, позволяющие объяснить, как в среде насыщенной органическими молекулами могут протекать автокаталитические процессы, реплицирующие некоторые из этих молекул. Одни молекулы реплицируются успешнее, другие — хуже. Так запускается процесс химической эволюции, которая предшествует эволюции биологической.

 

На сегодняшний день среди биологов преобладает гипотеза РНК-мира, утверждающей, что между химической эволюцией, в которой размножались и конкурировали отдельные молекулы и полноценной жизнью, основанной на модели ДНК—РНК—белок, был промежуточный этап, на котором размножались и конкурировали между собой отдельные молекулы РНК. Уже есть исследования, показывающие, что некоторые молекулы РНК обладают автокаталитическими свойствами и могут обеспечивать самовоспроизведение без участия сложных белковых молекул.

 

Современная наука еще далека от исчерпывающего объяснения, как конкретно неорганическое вещество достигло высокого уровня организации, характерного для процессов жизнедеятельности. Тем не менее, ясно, что это был много ступенчатый процесс, в ходе которого уровень организации вещества шаг за шагом повышался. Восстановить конкретные механизмы этого ступенчатого усложнения — задача будущих научных исследований. Эти исследования идут по два основным направлениям:

  • сверху вниз: анализ биообъектов и изучение возможных механизмов образования их отдельных элементов,
  • снизу вверх: усложнение «химии» — изучение всё более сложных химических соединений.

Пока добиться полноценного соединения этих двух подходов не удалось. Тем не менее, биоинженеры уже сумели «по чертежам», то есть, по известному генетическому коду и структуре белковой оболочки собрать из биологических молекул простейший живой организм — вирус. Тем самым доказано, что для создания живого организма из неживой материи не требуется сверхъестественного воздействия. Так что необходимо лишь ответить на вопрос, как этот процесс мог пройти без участия человека, в естественной среде.

 

Широкого распространено «статистическое» возражение против абиогенного механизма возникновения жизни. Например, в 1966 г. немецкий биохимик Шрамм подсчитал, что вероятность случайного сочетания 6000 нуклеотидов в РНК-вирусе табачной мозаики: 1 шанс из 102000. Это чрезвычайно низкая вероятность, которая указывает на полную невозможность случайного образования подобной РНК. Однако в действительности это возражение построено некорректно. Оно исходит из предположения, что вирусная молекула РНК должна образоваться «с нуля» из разрозненных аминокислот. В случае ступенчатого усложнения химических и биохимических систем вероятность рассчитывается совершенно иначе. Кроме того, нет никакой необходимости получить именно такой вирус, а не какой-то другой. С учетом этих возражений получается, что оценки вероятность возникновения вирусной РНК занижены до полной неадекватности и не могут рассматриваться как убедительное возражение против абиогенной теории возникновения жизни.

 

Гипотеза панспермии

Гипотеза о появлении жизни на Земле в результате переноса с других планет неких зародышей жизни получила название панспермии (от греч. pan — весь, всякий и sperma — семя). Эта гипотеза примыкает к гипотезе стационарного состояния. Её приверженцы поддерживают мысль о вечном существовании жизни и выдвигают идею о внеземном ее происхождении. Одним из первых идею о космическом (внеземном) происхождении жизни высказал немецкий ученый Г. Рихтер в 1865 г. Согласно Рихтеру жизнь на Земле не возникла из неорганических веществ, а была занесена с других планет. В связи с этим возникали вопросы, насколько возможно такое перенесение с одной планеты на другую и как это могло быть осуществлено. Ответы искали в первую очередь в физике, и неудивительно, что первыми защитниками этих взглядов выступили представители этой науки, выдающиеся ученые Г. Гельмгольц, С. Аррениус, Дж. Томсон, П.П. Лазарев и др.

 

Согласно представлениям Томсона и Гельмгольца, споры бактерий и других организмов могли быть занесены на Землю с метеоритами. Лабораторные исследования подтверждают высокую устойчивость живых организмов к неблагоприятным воздействиям, в частности к низким температурам. Например, споры и семена растений не погибали даже при длительном выдерживании в жидком кислороде или азоте.

 

Современные приверженцы концепции панспермии (в числе которых — лауреат Нобелевской премии английский биофизик Ф. Крик) считают, что жизнь на Землю занесена случайно или преднамеренно космическими пришельцами. К гипотезе панспермии примыкает точка зрения астрономов Ч. Викрамасингха (Шри-Ланка) и Ф. Хойла (Великобритания). Они считают, что в космическом пространстве, в основном в газовых и пылевых облаках, в большом количестве присутствуют микроорганизмы, где они, по мнению ученых, и образуются. Далее эти микроорганизмы захватываются кометами, которые затем, проходя вблизи планет, «сеют зародыши жизни».

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...