Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Нарушения лёгочной перфузии: причины, механизмы развития. Нарушения вентиляционно-перфузионных отношений в лёгких.




Нарушения перфузии. В легкие кровь поступает по системе легочных (малый круг кровообращения) и бронхиальных (большой круг кровообращения) сосудов. Основной функцией малого круга является оксигенация венозной крови и удаление из нее углекислого газа. Способность организма человека к насыщению кислородом ограничена. Депо кислорода составляет примерно 1000 мл. При этом на артериальную кровь приходится 600 мл, на венозную кровь – 200 мл. В состоянии покоя в сосудах легких находится 500 млкрови, из них 80-120 мл – в артериальном русле. Объем легочных капилляров равен 120-140 мл (человека с массой тела 70 кг), поверхность сосудистого русла в среднем составляет 70 м2

В условиях нагрузки минутный объем крови может возрастать в 6 раз по сравнению с покоем, при этом кровеносная система легких в состоянии отвечать на предъявление к ней повышенного требования.

В легочных сосудах сопротивление кровотоку в 10-15 раз меньше, чем в сосудах других тканей, из-за относительно меньшей толщины сосудистой стенки. Большая растяжимость стенок легочных сосудов обеспечивает незначительные изменения давления в сосудах малого круга кровообращения при изменении объема притекающей крови (пассивно снижается легочное сопротивление и увеличивается объем сосудистого русла). В легочных сосудах мышечный слой выражен незначительно, что не позволяет четко дифференцировать резистивную и емкостную функции между артериями и венами легких.

Движущей силой легочного кровотока является разность давлений в правом желудочке и левом предсердии, регулирующим механизмом – легочное сосудистое сопротивление. Рецепторы, расположенные в легочных сосудах, обеспечивают рефлекторную регуляцию перфузии легких.

Давление в сосудистой сети легких зависит от давления в левых отделах сердца и составляет в среднем в артериях 15-25, в венах – 9-15 мм рт.ст. Давление в сосудах легких может изменяться в зависимости от тонуса бронхов. При бронхоспазме появляются признаки легочной гипертензии.

Сосуды малого круга являются определенным барьером, удаляющим из крови циркулирующие микроагрегаты тромбоцитов и эритроцитов, оторвавшиеся тромбы, жировые и газовые эмболы и др. Незначительное количество задерживающихся микроэмболов не вызывает существенных нарушений перфузии. Массивная эмболия сосудов малого круга кровообращения приводит к таким тяжелым расстройствам перфузии, как ишемия легких, респираторный дистресс-синдром взрослых. В ответ на изменения легочного кровотока включаются рефлекторные реакции в малом и большом круге кровообращения.

Микроциркуляторное русло представлено сетью капилляров двух видов – широкие (диаметр 20-40 мкм) и узкие (диаметр 4-12 мкм). Широкие капилляры образуют крупные петли и способны одномоментно вмещать до пяти эритроцитов. Узкие капилляры формируют мелкопетлистую капиллярную сеть, способны вмещать 1-2 эритроцита. По широким капиллярам в условиях покоя протекает основная масса перфузируемой через легкие крови. Узкие капилляры включаются в процесс перфузии при физических нагрузках.

Система бронхиальных сосудов снабжает кровью дыхательные пути вплоть до терминальных бронхиол. На ее долю приходится примерно 3% легочного кровотока. В бронхиальных сосудах уровень кровяного давления выше, чем в легочных. Поэтому большая часть крови из них поступает в легочные сосуды, что приводит к некоторому снижению рО2 в легочной вене.

Наличие двух систем кровоснабжения легких определяет особенности массопереноса различных веществ в них. Так, кислород транспортируется из альвеол в кровь легочных сосудов, а из бронхиальных сосудов в ткань легкого, углекислый газ – в противоположном направлении. Из системы легочных сосудов снабжаются субстратами альвеолы, альвеолярные ходы и респираторные бронхиолы. Альвеолярная стенка часть кислорода для собственного метаболизма получает непосредственно из воздуха.

Из притекающей крови в ткань легкого интенсивно перемещаются липиды и липопротеиды. Из клеточных структур легких в кровь поступают катехоламины, антикоагулянты и др. Эти перемещения происходят путем микропиноцитоза.

Бронхиальные сосуды играют первостепенную роль в лимфогенезе. Этому способствуют близкое расположение бронхиальных и лимфатических сосудов и более высокое гидродинамическое давление, определяющее поток жидкости и белковых масс из них в интерстиций.

В легких существуют многочисленные артериовенозные анастомозы между сосудами малого и большого круга кровообраще­ния, играющие важную роль в условиях патологии.

Нарушения перфузии легких - результат патологических процессов как в легких, так и в других органах и системах организма. В условиях острых заболеваний легких гемодинамические расстройства в системе легочной артерии обусловлены в основном тромбоокклюзионными процессами и характеризуются снижением или полной блокадой локального кровотока. Наряду с этим, на ранних стадиях пневмонии в пораженных отделах легких открываются артериовенозные анастомозы между сосудами большого и малого круга кровообращения. При воспалении бронхов увеличивается кровенаполнение оплетающих их артерий. При хронизации воспалительного процесса сохраняющиеся нарушения перфузии становятся пусковым механизмом для вторичных гемодинамических расстройств и сдвигов вентиляционно-перфузионных отношений в легких, приводящих к выраженным расстройствам кровообращения и дыхания. Присоединение эмфиземы, пневмосклероза способствует повышению бронхиального и легочно-сосудистого сопротивления, развитию легочной гипертензии, повышению давления в правом желудочке и формированию типичной картины «легочного сердца».

Выделяют три типа нарушений легочной перфузии, ведущих к дыхательной недостаточности:

1-й тип развивается в результате эмболии легочных сосудов (макро- и микроэмболия). Возможно возникновение ишемии легкого, образование в ишемизированной зоне биологически активных веществ, влияющих на процессы перфузии и просвет бронхов.

2-й тип обусловлен системными васкулитами (гиперреактивные васкулиты, септические заболевания, васкулиты типа Шенляйн-Геноха, гранулематоз Вегенера, артериит Такаясу и др.).

3-й тип – легочная артериальная гипертензия при пороках митрального клапана, врожденных пороках сердца (открытый артериальный проток, дефект межпредсердной перегородки, открытый атриовентрикулярный канал, дефект межжелудочковой перегородки), хронических обструктивных заболеваниях легких.

Развитие легочной гипертензии может быть вызвано альвеолярной гипоксией – легочная гипоксическая вазоконстрикция. Этот тип нарушений перфузии возникает при горной болезни, хронических обструктивных заболеваниях легких, заболеваниях плода и новорожденных. В основе данного вазоконстрикторного механизма лежит физиологический принцип – невентилируемая альвеола не должна перфузироваться.

В разных участках легких объем кровотока определяется комплексом факторов, среди которых ведущее место занимает рО2 альвеолярного воздуха. В норме уменьшение вентиляции альвеолы и снижение в ней рО2 сопровождается гипоперфузией этой зоны. При патологии этот приспособительный механизм может оказаться неадекватным и проявляться в виде гиперреактивности (возникновение артериальной легочной гипертензии), гипореактивности (увеличение шунтирования венозной крови) и гипоксемии. Повышение давления в малом круге в условиях покоя свидетельствует о манифестации легочной гипертензии, выявление повышенного давления только в условиях физической нагрузки – о латентной форме легочной гипертензии.

Причины первичной (идиопатической) легочной гипертензии остаются неясными. Некоторые авторы связывают ее развитие с патологией легочного нервного сплетения (плексогенная легочная артериопатия) и веноокклюзионной патологией. Диагноз первичной легочной гипертензии может быть поставлен при отсутствии в анамнезе указаний на легочную и сердечную патологию, повышении легочного давления при нормальном капиллярном кровотоке, отсутствии локальных изменений в сосудистом русле легких при ангиографическом исследовании.

Заболевания легких, особенно сопровождающиеся обструктивными нарушениями, могут приводить к развитию вторичной легочной гипертензии.

Соответственно степени альвеолярной гиповентиляции и альвеолярной гипоксии возникает спазм легочных артериол, ограничивающий кровоток через плохо вентилируемые альвеолы и препятствующий сбросу венозной крови в большой круг кровообращения (альвеолярно-сосудистый рефлекс Эйлера-Лильестранда). Выраженность рефлекса зависит от степени альвеолярной гиповентиляции.

Функциональная диагностика перфузионных нарушений. Неинвазивные методы функциональной диагностики (электрокардиография, механокардиография и др.) позволяют косвенно оценивать состояние перфузии легких и связанных с этим органных нарушений. Широкое распространение получили методы ангиографии и радиоизотопной сцинтиграфии.

Общий объем легочной перфузии равен кровотоку в большом круге кровообращения. Измеряют его методом газо- и термодилюции, магнитной флоуриметрии, радиоизотопным методом. Принцип метода: объем легочного кровотока равен отношению количества индикатора к его концентрации в артериальной крови.

Легочную перфузию оценивают при измерении объема перфузированной крови в единицу времени, системного артериального давления и давления в легочной артерии, которое измеряют с помощью катетера, введенного в правый желудочек и легочную артерию.

Основой раннего выяснения перфузионных нарушений является определение гемодинамических показателей в покое и при дозированной физической нагрузке, в положении сидя (лежа) и стоя.

В условиях нагрузки увеличение объема перфузируемой крови сопровождается повышением давления в легочной артерии, которое людей моложе 40 лет не превышает 30 мм рт.ст.

Нарушение вентиляционно-перфузионных отношений. Процессы вентиляции, перфузии и диффузии протекают в различных отделах легких неодинаково. Нарушения газообмена возникают наиболее часто при несоответствии вентиляции и кровотока.

У человека, находящегося в вертикальном положении, интенсивность перфузии снижается от основания к верхушкам легких, в нижних отделах по сравнению с верхушками кровоток значительно больше.

Расстояние между верхушками и диафрагмой у взрослого человека равно примерно 30 см. В положении стоя в плевральной полости разница давления в верхних и нижних отделах составляет в среднем 7 см вод.ст., из этого следует, что в области верхушек транспульмональное давление выше, чем у основания. Поэтому на вдохе наиболее выражено растяжение альвеол, расположенных в верхних отделах легких, и на их долю приходится большая нагрузка при дыхании.

Различия легочного кровотока проявляются в легочных сегментах, расположенных на разных уровнях относительно основания сердца. В отделах легких, расположенных ниже уровня сердца, к среднему давлению в легочных артериях прибавляется гидростатическое давление кровяного столба. В отделах, расположенных выше уровня сердца, наоборот, величина легочного кровотока меньше на эту величину.

Относительно низкое давление в малом круге кровообращения определяет ограничение перфузии в верхушках легких, которое в положении лежа нивелируется и вместо него появляется вентро-дорзальный градиент. В положении на боку легкое, расположенное ниже, вентилируется и перфузируется лучше. Во время физической нагрузки повышение перфузионного давления обеспечивает улучшение кровотока в верхушечных отделах легких.

Если вентиляция преобладает над кровотоком (АВ/МО будет больше 1,0), то из крови вымывается большее количество СО2, что ведет к гипокапнии. Если вентиляция отстает от кровотока (АВ/МО меньше 1,0), то в альвеолярном воздухе будет нарастать РСО2 и снижаться РО2, что приведет к гипоксии и гиперкапнии.

При нормальном газообмене оптимальное соотношение АВ/МО должно поддерживаться во всех альвеолах. Однако полностью это условие не выполняется, т.к. альвеолярная вентиляция и перфузия в нижних отделах легких осуществляется интенсивнее, чем в остальных его отделах. В верхних отделах легких альвеолярная вентиляция доминирует над кровотоком, а в нижних, наоборот – перфузия преобладает над альвеолярной вентиляцией.

В условиях патологии (например, при хронических обструктивных заболеваниях легких, дистресс-спндроме взрослых и новорожденных) неравномерное распределение сопротивления дыхательных путей и растяжимости легочной ткани приводит к гиповентиляции, нарушается соответствие между вентиляцией и кровотоком. В отдельных зонах вентиляция и кровоток находятся в оптимальном соответствии, благодаря чему осуществляется адекватный газообмен, но в других зонах имеет место перфузия нефункционирующих коллабированных альвеол. В случае, если процессы вентиляции и перфузии сохраняются на постоянном уровне при уменьшении поверхности газообмена, постепенно увеличивается объем мертвого пространства и примесь венозной крови с последующим развитием гипоксии и гиперкапнии.

Нарушения вёнтиляционно-перфузионных отношений проявляются гипоксемией и нормокапнией. Повышение содержания углекислого газа приводит к стимуляции дыхательного центра и гипервентиляции. Однако на величину рО2 артериальной крови это значительного влияния не оказывает, так как увеличение вентиляции происходит преимущественно в хорошо вентилируемых альвеолах. Принадлежащие к ним капилляры содержат оксигенированную кровь, и дальнейшее повышение рО2 даст только незначительный дополнительный прирост оксигемоглобина.

Иначе обстоит дело с углекислым газом. Свойство СО2 легко растворяться обеспечивает быстрое выравнивание значений рСО2 в капиллярной крови и альвеолярном воздухе. Поэтому при гипервентиляции происходит быстрое вымывание СО2 и развитие гипокапнии. Смешение крови с низким содержанием СО2 и крови с высоким содержанием СО2, поступающей из зоны плохо вентилируемых альвеол, проявляется нормокапнией.

При заболеваниях легких к физиологической неравномерности присоединяется патологическая. Так, при пневмониях, ателектазе и других заболеваниях кровоток и альвеолярная вентиляция в пораженных участках легких ограничивается, а в остальных здоровых участках интенсифицируется. Поэтому в легких как в физиологических, так и особенно в патологических условиях имеются альвеолы, (1) оптимально вентилируемые и перфузируемые; (2) альвеолы, которые вентилируются, но не перфузируются (так называемое альвеолярное мертвое пространство); (3) альвеолы, которые не вентилируются, но перфузируются (альвеолярный веноартериальный шунт). Между этими крайними состояниями возможна масса переходных состояний. Газовый состав оттекающей от легких крови будет зависеть от интеграции всех перечисленных механизмов:

Из изложенного материала следует, что определенная часть крови, в которой не произошло газообмена, попадает в артериальное русло. Это явление получило наименование сброса, или шунтирования. В легочной ткани шунтирование имеет место и при физиологических условиях (5-7%), но особое значение оно приобретает в патологии: глобальное поражение легких, врожденные пороки сердца (незаращение межпредсердной перегородки, межжелудочковой перегородки, Боталлова протока - прямые причины шунтов). Это ведет к гипоксемии, снижении оксигенации крови (цианоз), гиперкапнии, ацидозу и другим проявления дыхательной недостаточности.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...