Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Берем нервную клетку. Сильнее кошки звери есть




Берем нервную клетку

Летом 1961 года в университетских зданиях на Ленинских горах собрался Международный конгресс биохимиков. Светила биохимии, съехавшиеся со всего света, стайками, с желтыми профессорскими портфелями и программками в руках, носились с факультета на факультет: заседания разных секций шли одновременно, и нужно было поспеть на все интересные доклады.

Я и мои студенты вернулись с Белого моря, когда конгресс был в разгаре. Не успели мы заявиться на факультет, как налетели друзья‑ товарищи и поволокли на химфак. «Как, ты ничего не знаешь? Сегодня доклад Хидена! »

Поясняю: у арабов Магомет, у индусов Будда, а у тех, кто работает по химии нервных клеток, – Хиден. Я не биохимик, но пропустить доклад Хидена! Через несколько минут мы уже сидели в переполненной аудитории химфака.

Человек среднего роста и средней полноты, похожий, я бы сказал, на бухгалтера, мягким голосом и медленно – настолько медленно, что английский язык аудитория воспринимала до стараний переводчика, – начал примерно так:

– Мы берем нервную клетку, отделяем от нее мелкие клетки‑ сателлиты и снимаем с нервной клетки оболочку. Вслед за тем порознь – в оболочке, внутренней части клетки и сателлитах – мы определяем активность фермента аденозинтрифосфатазы и содержание следующих веществ…

В аудитории раздался чей‑ то смех. Хиден умолк и недоуменно поднял голову. Смех нарастал, смеялись уже многие – открыто, в голос. Кто‑ то крикнул:

– Как вы это делаете?

Хиден тоже улыбнулся.

– Руками, – сказал он.

Вам, должно быть, знакомо это чувство: восхищение работой мастера. Взрослые люди, подобно детям, разевают рты, смеются.

Ведь что такое нервная клетка? На всей нашей планете меньше людей, чем клеток в одном человечьем мозге. Клетка – это микроскопический комочек слизи, который и под микроскопом‑ то едва отличим от окружающих комочков. «Руками»!..

Сотни лет и тысячи лет не дают нам покоя сокровенные тайны мозга. Человеческий разум стремится познать самого себя. Благодаря чему умеем мы думать? Что такое память? Отчего в таком совершенном согласии сокращаются и расслабляются наши мышцы?

Чтобы понять, каким способом в улье появляется мед, надо познакомиться с пчелой. Чтобы уяснить работу радиоприемника, надо понять работу лампы. Нет, это не современная наука додумалась, что путь к познанию мозга лежит через познание нервной клетки, это знали и старики классики, не слыхавшие ни про какие радиолампы и транзисторы. Но как могли они подобраться к нервной клетке?

С познанием мозга связаны великие имена.

У Сеченова была феноменальная наблюдательность. В простеньких рефлексах лягушки он сумел разглядеть явления, ускользавшие от внимания других. Так Сеченов понял, что под влиянием раздражений нервные центры могут не только возбуждаться – что было общепризнанным, – но и приходить в противоположное состояние, названное центральным торможением. Это открытие прояснило, каким принципиальным способом достигается взаимная координация нервных центров. Но до клетки было далеко.

Нельзя сказать, что полвека назад не знали нервных клеток. Знаменитый испанец Рамон‑ и‑ Кахаль знал их настолько хорошо, что его описаниями пользуется и современная наука.

Но он видел мертвые клетки, окрашенные особыми способами на срезах мозга. Живые же клетки были недоступны экспериментатору.

Физиологи шли на хитрости.

В Англии работал Шеррингтон. К мышцам кошки он подвязывал ниточки, ниточки вели к рычажкам, и на закопченной ленте прочерчивались следы сокращений. По этим следам Шеррингтон сумел описать законы, управляющие деятельностью относительно простых нервных центров спинного мозга.

В России работал Павлов. Он открыл законы высшей нервной деятельности, считая капельки слюны, истекавшей из фистулы у собаки. Фистула вела в проток слюнной железы, но для Павлова она была оконцем в головной мозг. Это мог сделать только великий ученый, и именно потому, что он был великим, он ясно понимал, как далеки эти опыты от познания первичных механизмов нервной деятельности.

Вот слова самого Павлова:

«Физиология, касающаяся клетки, есть пока физиология поистине жалкая… она – физиология будущего… Мы должны будем разделить клетку на микроскопические части, узнать, как они работают в отдельности, как взаимодействуют между собой и как из этого слагается вся работа клетки. Но, понятно, ответить на эти вопросы страшно трудно. Здесь потребуется огромная острота ума, огромные, гениальные ухищрения. Так что если вы подумаете, то поймете, что дно жизни, фундамент жизни спрятан от человека еще очень далеко и что для его достижения потребуется работа длинного ряда поколений исследователей».

 

 

Сильнее кошки звери есть

Однако наука не стала ждать «длинного ряда поколений». Уже в пятидесятых годах нашего века она перешла к решительному наступлению на нервную клетку. В докладах и статьях все чаще стала появляться приставочка «микро»: микроманипулятор, микроэлектрод. А прошло еще несколько лет, и эта приставка стала слаба, тогда появились слова: ультрамикроэлектрод, ультрамикротом, ультрамикрохимический анализ.

Наука о мозге поставила себе на службу достижения точных наук. И если швед Хиден подобрался к обмену веществ отдельной нервной клетки, используя успехи аналитической химии, то в развитии микрофизиологии отдельной нервной клетки больше других сделал австралиец Экклс, взявший на вооружение арсенал современной радиоэлектроники.

Есть такой елочный аттракцион: к длинной бечевке подвешивают хлопушки, конфеты, пряники, а детвора идет с завязанными глазами, растопырив ножницы. Один срежет леденец, другой мимо проскочит.

Вот так, вслепую, Экклс входил микроэлектродом в спинной мозг кошки. Медленно, микрон за микроном движется электрод – тончайшая стеклянная трубочка, сама не толще микрона на своем конце. Глаза следят за экраном осциллографа. Пусто. Плохой электрод? Снова пальцы медленно вращают винт микроманипулятора. На экране какая‑ то грязь. То ли клетка, то ли не клетка? Еще поворот винта, и вдруг луч прыгает вниз и останавливается на новом уровне – электрод в клетке! По экрану пробегают импульсы – клетка живет, она работает.

Это нервная клетка – нейрон!

Сотни и сотни опытов, вновь и вновь электрод движется вниз, тысячи раз записана на пленке деятельность нейронов. Расшифрованы многие механизмы. К шестьдесят третьему году, когда Экклса награждают Нобелевской премией, микроэлектродный метод становится достоянием десятков лабораторий.

Но представьте себе, насколько больше будет срезано леденцов и пряников, если развязать глаза! Если бы экспериментатор мог видеть нервные клетки, точно выбирать место для введения электрода, располагать один электрод в нужном положении по отношению к другому…

Экклс – ученик Шеррингтона; может быть, оттого он так верен спинному мозгу кошки. У этого объекта только и есть преимущество, что он классический. Клетки довольно умеренных размеров, не больше 70 микрон в поперечнике, и главное – они лежат внутри мозга, не на его поверхности. Даже с хорошей оптикой физиолог остается слепым, видеть клетки в процессе опыта он не может.

Экклс сделал очень много, с его легкой руки спинной мозг стал основным объектом разных лабораторий, исследующих нервную клетку. Разных, но не всех.

Уже в середине пятидесятых годов многие физиологи поняли, что для исследований нейрона лучше отказаться от классических объектов физиологии и обратить свое внимание на некоторых беспозвоночных животных.

У всех этих букашек и таракашек нервные клетки работают по тем же самым законам, что и у нас с вами, зато величина клеток у них иногда бывает гораздо больше. Особенно велики они у моллюсков.

И, сидя на докладе Хидена и обозревая всю внимательную и сосредоточенную аудиторию, я имел особые основания для размышлений. Дело в том, что на беломорской биостанции МГУ, откуда я только что вернулся, мне посчастливилось найти замечательно крупные нервные клетки. Клетки эти смело можно было назвать гигантскими, они достигали в поперечнике 450 микрон. Хозяевами таких клеток оказались очаровательные морские слизни, называемые в зоологии «голожаберными», – весьма обычные обитатели прибрежных водорослей.

Клетки голожаберников обладали несравненными достоинствами. Они были не только велики, но плюс к тому ярко окрашены и лежали не в глубине мозга, как обычно лежат нейроны у позвоночных животных, а на его поверхности. Это означало, что микроэлектрод можно вводить не вслепую, а видя клетку и выбирая ту ее часть, которая тебе по душе.

У нас в Советском Союзе не были известны такие большие и такие удобные для физиолога нейроны. Эта мысль приятно щекотала самолюбие. Но была другая мысль, которая щекотала менее приятно: мировой рекорд оставался за нейронами другого недоступного для нас животного – моллюска аплизии, морского зайца. У того клетки доходили до 800 микрон, и на этих клетках вот уже несколько лет с большим успехом работали две французские физиологические лаборатории.

Ужасно хотелось найти зверя, который заткнул бы за пояс морского зайца, и были некоторые основания рассчитывать на успех.

Судите сами: среди разных видов беломорских голожаберников нервные клетки оказались крупнее у тех, которые и сами крупнее. Но на Дальнем Востоке, судя по зоологической литературе, голожаберные моллюски еще больше! Особенно отличается величиной некая красотка с латинским названием Tritonia.

Ну вот, теперь вам все становится понятным.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...