Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Современные средства естественнонаучных исследований




 

Специфика современных экспериментальных и теоретических исследований

 

На протяжении всех этапов эксперимента естествоиспытатель руководствуется в той или иной форме теоретическими знаниями. В последнем столетии в силу ряда объективных причин основной профессиональной деятельностью некоторых ученых стала исключительно теоретическая работа. Одним из первых ученых, которые не проводили никаких экспериментов, был немецкий физик Макс Планк.

Произошло, таким образом, деление естествоиспытателей на профессиональных теоретиков и экспериментаторов. Во многих отраслях естествознания возникли экспериментальные и теоретические направления и в соответствии с ними появились специализированные лаборатории и даже институты, например Институт теоретической физики. Такой процесс наиболее активно проходит во второй половине XX столетия. В прежние времена не только Ньютон и Гюйгенс, но и такие выдающиеся теоретики, как Максвелл, обычно сами экспериментально проверяли свои теоретические выводы и утверждения. В последние же десятилетия только в исключительных случаях теоретик проводит экспериментальную работу, чтобы подтвердить выводы своих теоретических изысканий.

Одна из существенных объективных причин профессиональной обособленности экспериментаторов и теоретиков заключается в том, что технические средства эксперимента значительно усложнились. Экспериментальная работа требует концентрации больших усилий, она не под силу одному человеку и выполняется в большинстве случаев целыми коллективом научных работников. Например, для проведения эксперимента с применением ускорителя, реактора и т. п. требуется относительно большой штат научных сотрудников. Поэтому даже при большом желании теоретик не в состоянии проверить на практике свои теоретические выводы и предложения.

Еще в 60-е годы нынешнего столетия, когда практически все отрасли естествознания находились на подъеме, академик П.Л. Капица с тревогой говорил о разрыве между теорией и экспериментом, между теорией и жизнью, между теорией и практикой, отмечая отрыв теоретической науки от жизни, с одной стороны, и, с другой стороны, недостаточно высокое качество экспериментальных работ, что нарушает гармоническое развитие науки.

Гармоническое развитие естествознания возможно тогда, когда теория опирается на достаточно основательную экспериментальную базу. А это означает, что для экспериментатора нужна хорошая материальная база; помещение со всевозможным специальным оборудованием, большой набор высокочувствительных приборов, специальные материалы, мастерские и т. п. Темпы развития естествознания в значительной степени обусловливаются совершенством такой материальной базы.

Отрыв теории от эксперимента, опыта, практики наносит громадный ущерб прежде всего самой теории и, следовательно, науке в целом. Отрыв от опыта и жизни характерен не только для естествоиспытателей, но и для философов, занимающихся философскими проблемами естествознания. Ярким примером может служить отношение некоторых философов к кибернетике в конце 40-х – начале 50-х годов, когда в отечественных философских словарях кибернетика называлась реакционной лженаукой. Если бы ученые руководствовались таким определением кибернетики, то, очевидно, освоение космоса и создание современных наукоемких технологий не стало бы реальностью, так как сложные многофункциональные процессы, вне зависимости от области их применения, управляются кибернетическими системами.

Работа крупных ученых-естествоиспытателей, внесших большой вклад в развитие современного естествознания, несомненно проходила в тесной взаимосвязи теории и эксперимента. Поэтому для развития естествознания на здоровой почве всякое теоретическое обобщение должно непременно проверяться на опыте. Только гармоническое развитие эксперимента и теории способно поднять на качественно новый уровень все отрасли естествознания.

 

Современные методы и технические средства эксперимента

 

Экспериментальные методы и технические средства современных естественнонаучных исследований достигли высокой степени совершенства. Многие технические устройства эксперимента основаны на физических принципах. Но их практическое применение выходит далеко за рамки физики – одной из отраслей естествознания. Они широко применяются в химии, биологии и других смежных естественных науках. С появлением лазерной техники, компьютеров, спектрометров и другой совершенной техники стали доступны для экспериментального исследования неизвестные ранее явления природы и свойства материальных объектов, стал возможен анализ быстропротекающих физических и химических процессов.

Лазерная техника. Для экспериментальных исследований многих физических, химических и биологических процессов весьма важны три направления развития лазерной техники:

· разработка лазеров с перестраиваемой длиной волны излучения;

· создание ультрафиолетовых лазеров;

· сокращение длительности импульса лазерного излучения до 1 ас (10-18 с) и меньше:

Чем шире спектр излучения лазера, в котором он может перестраиваться, тем ценнее такой лазер для исследователя. Среди лазеров с перестраиваемой длиной волны широко применяются лазеры на красителях. Длина волн излучения таких лазеров охватывает спектр от ближней ультрафиолетовой области до ближней инфракрасной, включая видимый диапазон, и легко перестраивается в этом спектре. К настоящему времени разработаны лазеры, длина волны которых составляет менее 300 нм, т. е. соответствует ультрафиолетовой области. К таким лазерам относится, например, криптон-фторидный лазер.

Разрабатываются лазеры, длительность импульса излучения которых приближается к 1 ас. Такие лазеры, несомненно, позволят определить механизм физических, химических и биологических процессов, протекающих с чрезвычайно высокой скоростью.

Трудно перечислить все области применения лазеров для исследования многообразных химических процессов. Назовем лишь некоторые из них: в фотохимии лазер помогает изучить процесс фотосинтеза и тем самым найти способ более эффективно использовать солнечную энергию; с помощью лазеров разделяются изотопы, например, производится очистка изотопов урана и плутония; лазерные приборы служат анализаторами химического состава воздуха; в биологии лазеры дают возможность изучить живые организмы на клеточном уровне. Весьма многообразно применение лазеров в химической кинетике при исследовании различных процессов, длительность которых составляет от 10-12 до 10-18 и менее секунд.

Возможности естественнонаучных исследований расширяются с применением лазеров на свободных электронах. Принцип действия таких лазеров основан на том, что в пучке электронов, движущихся со скоростью, близкой к скорости света, в периодически изменяющемся магнитном поле в направлении движения электронов возникает излучение света. Эксперимент показывает, что лазеры на свободных электронах отличаются высокой эффективностью перестройки длины волны при большой мощности излучения в широком диапазоне – от микроволнового излучения до вакуумного ультрафиолета.

Синхротронные источники излучения. Синхротроны применяются не только в физике высоких энергий для исследования механизма взаимодействия элементарных частиц, но и для генерации мощного синхротронного излучения с перестраиваемой длиной волны в коротковолновой ультрафиолетовой и рентгеновской областях спектра. Исследование структуры твердых тел, определение расстояния между атомами, изучение строения молекул органических соединений – успешному решению этих и других задач способствует синхротронное излучение.

Экспериментальные методы расшифровки сложных структур. Для идентификации и анализа сложных структур, в частности для анализа сложных молекул, необходимо управлять химическими процессами и затем определять состав и структуру продуктов реакций. Предложенные физиками эффективные методы экспериментальных исследований макрообъектов на молекулярном уровне – ядерный магнитный резонанс, оптическая спектроскопия, масс-спектроскопия, рентгеноструктурный анализ, нейтронография и т. п. – позволяют исследовать состав и структуру необычайно сложных молекул, что способствует изучению, например, химической природы жизненно важных биологических процессов.

Метод ядерного магнитного резонанса (ЯМР) основан на анализе взаимодействия магнитного момента атомных ядер с внешним магнитным полем. Это один из важнейших методов в разных отраслях естествознания, в особенности, в химии: химии синтеза, химии полимеров, биохимии, медицинской химии и т. п. С помощью метода ЯМР можно определить, например, химическое окружение атомов водорода даже в таких сложных молекулах, как сегменты ДНК. Прогресс в развитии спектроскопии ЯМР зависит от возможности создания сильного магнитного поля, которое можно получить с помощью компактных сверхпроводящих магнитов. Созданный в 1973 г. томограф, основанный на ЯМР, позволяет наблюдать картину распределения химических отклонений и концентрации ядер таких крупных объектов, как тело человека, что весьма важно при диагностике ряда заболеваний, в том числе и злокачественных опухолей.

Оптическая спектроскопия позволяет анализировать спектр излучения вещества, находящегося в различных агрегатных состояниях: твердом,.жидком, газообразном. Спектральный анализ – физический метод качественного и количественного определения состава вещества по его оптическому спектру излучения. В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соединений. Содержание исследуемого вещества при количественном спектральном анализе определяют по относительной или абсолютной интенсивности линий или полос спектра.

С применением лазерного источника излучения и персонального компьютера возможности оптического спектрометра значительно расширяются: такой спектрометр способен обнаружить отдельную молекулу или даже атом любого вещества.

С помощью метода индуцированной лазерной флуоресценции можно регистрировать загрязнение воздуха на расстоянии около двух километров.

В масс-спектроскопии исследуемое вещество вначале превращается в газовую фазу, затем газ конденсируется и ионы ускоряются до заданной кинетической энергии электрическим полем. Масса частиц может быть определена двумя способами: измерением радиуса кривизны траектории иона и измерением времени пролета им заданного расстояния.

Масс-спектрометры отличаются высокой чувствительностью и могут обнаружить, например, три атома изотопа 14C среди 1016 атомов 12С. Такое содержание изотопа 14С соответствует, согласно радиоизотопному методу, возрасту пород в 70 000 лет. Масс-спектрометрия широко применяется для анализа элементов, определения изотопного состава и строения молекулы в таких областях, как производство интегральных схем, металлургия, ядерная, нефтяная, фармацевтическая и атомная промышленность.

Комбинированные приборы – хромато-масс-спектрометры – позволяют обнаружить в питьевой воде галогеноуглеводороды и нитрозамины, а также определить небольшие концентрации одного из самых ядовитых веществ – изомеров диоксина.

Сочетание газового хроматографа с масс-спектрометром – лучший аналитический прибор для работы со сложными смесями, позволяющий решать разнообразные задачи химии, биологии, геохимии, экологии, криминалистики и других наук. Однако вплоть до недавнего времени применение такого прибора ограничивалось лишь легко испаряемыми веществами. С разработкой способов десорбции ионов из твердых образцов путем бомбардировки их ионами, фотонами или нейтральными частицами границы применения масс-спектроскопии значительно расширились. Существенно увеличились определяемые предельные молекулярные массы соединений, исследуемых методом масс-спектроскопии. Например, плазменная десорбция с применением бомбардировки продуктами деления радиоактивного калифорния-252 позволила получить ионы с молекулярной массой 23000 и произвести их масс-спектральный анализ. С помощью полевой и лазерной десорбции можно получить масс-спектральные характеристики фрагментов ДНК. Для идентификации неизвестного вещества методом масс-спектроскопии достаточно всего10-10соединения.В плазме крови масс-спектрометр регистрирует активное вещество марихуаны в концентрации 0,1 мг на килограмм массы тела.

Современные электрохимические методы в сочетании с высокочувствительной аппаратурой открывают новые возможности исследования структуры и функций живой клетки: с помощью электродов, площадь которых составляет всего лишь несколько микрометров, можно регистрировать процессы, происходящие внутри клетки.

Для определения строения молекул необходимо знать пространственное расположение атомов. Зная молекулярную структуру, легче понять физические и химические свойства соединения, механизмы химических реакций и идентифицировать новые соединения. Один из наиболее распространенных методов исследования молекулярных структур – рентгено-структурный анализ, основанный на явлении дифракции, – позволяет изучать все те соединения, которые удается получить в кристаллическом состоянии. Современные компьютеры расшифровывают рентгенограмму довольно сложной молекулярной структуры. Рентгеноструктурный анализ способствовал получению феромонов насекомых, применяемых для борьбы с вредителями в сельском хозяйстве, и изучению гормонов роста, необходимых для увеличения производства пищи и биомассы.

Рентгеноструктурный анализ дополняет нейтронография, основанная на дифракции нейтронов. Для нейтронографии необходимы потоки нейтронов, которые получаются в ядерных реакторах, что несколько ограничивает применение данного метода. Отличительная особенность нейтронографии – высокая точность определения расстояния между атомами. Нейтронография успешно применяется при определении структур сверхпроводников, рибосом и других сложных молекулярных образований, а также расположения протонов, участвующих в образовании водородных связей, определяющих строение белков.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...