Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классификация и основные элементы конструкций теплового оборудования.




Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов. Их можно классифицировать по нескольким различным признакам.

По своему функциональному назначению тепловое оборудование классифицируется на универсальное и специализированное. К универсальным тепловым аппаратам относятся плиты кухонные, с помощью которых можно осуществлять различные приемы тепловой обработки. Специализированные тепловые Аппараты предназначены для реализации отдельных способов тепловой обработки.

По технологическому назначению специализированное тепловое оборудование классифицируется на варочное, жарочное, жарочно-пекарное, водогрейное, вспомогательное.

Варочное оборудование включает варочные котлы, автоклавы, пароварочные аппараты, сосисковарки.

В группу жарочного оборудования входят сковороды, фритюрницы, грили, шашлычные печи.

К жарочно-пекарному оборудованию относятся жарочные и пекарные шкафы, парожарочные аппараты.

Водогрейное оборудование представлено кипятильниками и водонагревателями.

Вспомогательное оборудование включает мармиты, тепловые шкафы и стойки, термостаты, оборудование для транспортировки пищи.

В зависимости от источника теплоты оборудование классифицируется на электрические, паровые, газовые (твердо или жидко топленные) тепловые аппараты. Но структуре рабочего цикла тепловое оборудование подразделяется на аппарат периодического и непрерывного действия.

По способу обогрева различают контактные тепловые аппараты и аппараты с непосредственным обогревом пищевых продуктов.

По конструктивному решению тепловые аппараты классифицируются на секционные и несекционные, немодулированные и модулированные.

Несекционные тепловые аппараты имеют различные габарита, конструктивное исполнение: их детали и узлы не унифицированы и они устанавливаются индивидуально, без учета блокировки с другими аппаратами.

Секционное оборудование выполняется в виде секций, в которых основные узлы и детали унифицированы. Фронт обслуживания таких аппаратов – с одной стороны, благодаря чему возможно соединение отдельных секций и получение блока аппаратов требуемой мощности и производительности.

В основу конструкций модульных аппаратов положен единый размер -модуль. При этом ширина (глубина) и высота до рабочей поверхности всех аппаратов одинаковы, а длина кратна модулю. Основные детали и узлы этих аппаратов максимально унифицированы.

Секционное модулированное оборудование имеет ряд преимуществ перед немодулированным оборудованием:

- одинаковая ширина и высота отдельных секций позволяют устанавливать их в технологические линии;

- применение линейного принципа расстановки позволяет экономить 12-20% производственных площадей.

- Обеспечивается последовательность технологического процесса, удобная взаимосвязь отдельных его стадий;

- сокращается непроизводительное помещение персонала, что способствует повышению производительности труда;

- снижаются затраты на монтаж и ремонт оборудования;

- уменьшаются расходы на прокладку трубопроводов, канализационных труб, электрического кабеля.

За исходные параметры в типоразмерном ряду тепловых аппаратов приняты: для плит и сковород - площадь жарочной поверхности, м2; для кипятильников -часовая производительность, дм 3/ч; для котлов - вместимость варочного сосуда, дм3 и т.д.

 

Процесс охлаждения и основы проектирования

Оборудований

Охлаждение, как и нагрев, основано на теплообмене — это самопроизвольный переход тепла от тела с большей температурой к телу с меньшей температурой. Для охлаждения используются процессы, протекающие с поглощением тепла из окружающей среды: таяние или растворение; кипение или испарение; сублимация и др.

Охлаждение бывает естественным и искусственным.

Естественным охлаждением называется теплообмен между охлаждаемым телом и окружающей средой — наружным воздухом и водой естественных водоемов. Однако при таком охлаждении температуру охлаждаемого тела можно понизить только до температуры окружающей среды. Поскольку температура окружающей среды для большинства стран, в том числе и Российской Федерации, зависит от времени года, то использование окружающей среды в летний период для охлаждения пищевых продуктов не дает желаемых результатов. Выйти из положения можно, если заготовить зимой лед и разместить его в ледниках (погребах), тогда летом погреба можно использовать для охлаждения и хранения продуктов. Для получения более низких температур применяют смесь льда с поваренной солью. Однако лед или смесь льда с солью воспринимают тепло охлаждаемых продуктов, изменяют свое агрегатное состояние и теряют охлаждающую способность. Поэтому таким способом охлаждения можно пользоваться только кратковременно, так как запасы льда ограничены. Учитывая большую трудоемкость, связанную с заготовкой водного льда, сложность получения низких температур, высокое содержание микроорганизмов в водном льде и другие факторы, естественное охлаждение заменяют искусственным. К искусственному относится охлаждение эвтектическим и "сухим" льдом, а также с помощью кипящих жидких газов и термоэлектричества. Достоинством искусственного охлаждения является возможность поддержания заданного режима хранения в любое время года.

Охлаждение с помощью холодильных машин называется машинным охлаждением.

Под низкими температурами, как правило, понимают температуры ниже окружающей среды. В холодильном оборудовании предприятий торговли и общественного питания этот диапазон составляет от 0 до - 40°С.

Низкие температуры получают в результате физических процессов, которые сопровождаются поглощением тепла. К числу основных таких процессов относится:

· * фазовый переход вещества — плавление, кипение (испарение), сублимация;

· * адиабатическое расширение газа;

· * дросселирование реального газа и жидкостей;

· * термоэлектрический эффект (эффект Пельтье);

Фазовый переход вещества. Фазовый переход некоторых веществ при плавлении, кипении (испарении), сублимации происходит при низких температурах и с поглощением значительного количества тепла.

Наиболее доступным веществом, применяемым для получения низких температур, является водяной лед, который при атмосферном давлении плавится при 0°С и имеет относительно большую удельную теплоту плавления (335 кДж/кг). Более низкую температуру плавления получают, смешивая лед с некоторыми солями.

Плавлением называют переход твердого тела в жидкое состояние при определенной температуре. Скрытая теплота плавления, или просто теплота плавления, — это количество тепла, необходимое для превращения 1 кг твердого вещества при постоянной температуре в жидкое состояние.

Сублимацией называется переход тел из твердого состояния в парообразное, минуя жидкую фазу. Теплотой сублимации называется количество тепла, необходимое для перехода 1 кг твердого вещества в пар при постоянных давлении и температуре. Твердая углекислота при атмосферном давлении переходит в газообразное состояние при -78°С.

Кипением называется процесс превращения жидкости в пар. Образование пара происходит по всему объему жидкости.

Подобно тому, как температура льда в течение всего периода его таяния остается неизменной, температура жидкости, нагретой до точки кипения, также остается постоянной при неизменном давлении пока вся не выкипит.

Процесс превращения жидкости, не достигшей точки кипения, в пар называется испарением. Испарение происходит только с поверхности жидкости.

В холодильной технике под испарением подразумевают также и кипение.

Процесс, обратный кипению, называется конденсацией. Конденсация протекает при постоянной температуре и сопровождается выделением скрытой теплоты парообразования. Температура конденсации так же, как и температура кипения, зависит от давления. Давление и температура всегда изменяются в одном направлении. Растет температура — увеличивается давление, и наоборот.

Адиабатическое расширение газа. Процесс, протекающий без теплообмена между рабочим телом (газом) и окружающей средой (стенками цилиндра), называется адиабатным. Известно, что внутренняя энергия тела определяется скоростью движения молекул и атомов. В нагретом теле скорость движения большая, в менее нагретом — меньшая. Если сжатому газу в цилиндре предоставить возможность расширяться, то газ будет совершать работу. Его молекулы, ударяясь о поверхность поршня, будут отдавать часть кинетической энергии, а их скорость отскока от поверхности поршня будет уменьшаться. Следовательно, работа в цилиндре осуществляется за счет уменьшения кинетической энергии молекул газа. Температура газа при этом будет понижаться. Учитывая, что процесс расширения газа происходит за доли секунды, теплообмен между газом и стенками цилиндра принято считать равным нулю. Все быстро протекающие процессы можно считать адиабатными. Если воздух, сжатый до 5 МПа при температуре 27 °С, адиабатически расширить до давления 0,2 МПа, то его температура понизится до -155°С.

Применяется в воздушных холодильных машинах.

Дросселирование реального газа и жидкостей. Дросселированием называют процесс создания искусственного сопротивления на пути движения газа или жидкости, который протекает без совершения внешней работы и без теплообмена с окружающей средой.

Дросселирование газа (эффект Джоуля-Томпсона) основано на резком снижении давления газа при прохождении через суженное отверстие (вентиль, дроссель). При дросселировании идеального газа, в котором отсутствуют силы взаимодействия между молекулами, температура газа не изменяется. При дросселировании реального газа в результате изменения внутренней энергии совершается работа по преодолению внутренних сил взаимодействия молекул. Это приводит к изменению температуры газа: повышению или понижению в зависимости от его первоначального состояния.

Дросселирование жидкостей. Жидкость с определенным давлением и температурой дросселируется в область низкого давления. Так как температура кипения жидкости зависит от давления, то жидкость, имея определенную температуру и поступая в область низкого давления, оказывается перегретой по отношению к низкому давлению. Происходит ее бурное кипение с образованием сухого насыщенного пара. Тепло на испарение жидкости и образование пара отбирается от самой жидкости. Жидкость при этом охлаждается. Температура пара и оставшейся (не выкипевшей) жидкости достигает одного и того же значения и зависит от давления, при котором они находятся.

Дросселирование жидкостей осуществляется в терморегулирующем вентиле холодильных установок. В домашних холодильниках дросселирование осуществляется в капиллярных трубках.

Термоэлектрическое охлаждение. Возможность получения холода путем непосредственной затраты электрической энергии было доказано в 1834 г. французским физиком Пельтье, который установил, что при прохождении тока в замкнутой цепи, спаянной из двух разных металлов (термопары), один спай нагревается, а другой охлаждается. Чтобы холодный спай постоянно имел низкую температуру и был источником охлаждения, теплый спай необходимо охлаждать, иначе теплота от него будет передаваться путем теплопроводности к холодному спаю. В 1949 г., благодаря работам советских ученых во главе с академиком А. Ф. Иоффе, термоэлектрическое охлаждение стали применять в технике.

Если термоэлементы последовательно соединить в батарею, то верхняя поверхность такой батареи будет холодной, а нижняя — горячей. Разместив верхнюю поверхность батареи в герметичном объеме (шкафу), воздух в шкафу будет охлаждаться, а теплота, выводимая из шкафа, будет передаваться в окружающий воздух через нижнюю поверхность батареи.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...