Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Коммуникационное оборудование




Хотя компьютеры и являются центральными элементами обработки данных в сетях, не менее важную роль играет коммуникационное оборудование. В последнее время коммуникационные устройства из вспомогательных компонентов сети превратились в основные наряду с компьютерами и системным программным обеспечением как по влиянию на характеристики сети, так и по стоимости. Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор.

Только в сети с полносвязной топологией для соединения каждой пары компьютеров имеется отдельная линия связи. Во всех остальных случаях неизбежно возникает вопрос о том, как организовать совместное использование линий связи несколькими компьютерами сети. Как и всегда при разделении ресурсов, главной целью здесь является удешевление сети.

Если топология сети не полносвязная, то обмен данными между произвольной парой конечных узлов (абонентов) должен идти в общем случае через транзитные узлы. Задача соединения конечных узлов через сеть транзитных узлов называется задачей коммутации. Устройство, функциональным назначением которого является выполнение коммутации, называется коммутатором (switch). Коммутатор производит коммутацию входящих в его порты информационных потоков, направляя их в соответствующие выходные порты. Коммутатором в широком смысле называется устройство любого типа, способное выполнять операции переключения потока данных с одного интерфейса на другой. Операция коммутации может быть выполнена в соответствии с различными правилами и алгоритмами. Некоторые способы коммутации получили специальные названия (например, маршрутизатор).

Коммутатором может быть как специальное устройство, так и универсальный компьютер со встроенным программным механизмом коммутации. В этом случае коммутатор называется программным. Компьютер может совмещать функции коммутации с выполнением своих обычных функций конечного узла. Эти узлы образуют коммуникационную сеть, к которой подключаются все остальные.

Задачей коммутатора является переброска данных на определённые для них интерфейсы. В связи с этим к функциям коммутатора добавляется задача мультиплексирования, при которой из нескольких отдельных потоков образуется общий агрегированный поток, который можно передавать по одному физическому каналу связи. Затем на выходе физического канала решается противоположная задача демультиплексирования – разделения суммарного агрегированного потока на несколько составляющих потоков. Мультиплексирование является способом обеспечения доступности имеющихся физических каналов одновременно для нескольких сеансов связи между абонентами сети. Операции мультиплексирования и демультиплексирования потоков при коммутации показаны на рисунке 3.

Рисунок 3

Инт. 1

Мультиплексирование Инт. 2

Коммутатор 1

Демультиплексирование

Инт. 3 Инт.4 Инт. 5

 

 

Коммутатор, у которого все входящие информационные потоки коммутируются на один выходной интерфейс, называется мультиплексором. Коммутатор, который имеет один входной интерфейс и несколько выходных, называется демультиплексором.

В вычислительных сетях используют как индивидуальные линии связи между компьютерами, так и разделяемые (shared), когда одна линия связи попеременно используется несколькими компьютерами. В случае применения разделяемых линий связи (часто используется также термин разделяемая среда передачи данных – shared media) возникает комплекс проблем, связанных с их совместным использованием, который включает как чисто электрические проблемы обеспечения нужного качества сигналов при подключении к одному и тому же проводу нескольких приёмников и передатчиков, так и логические проблемы разделения во времени доступа к этим линиям.

Классическим примером сети с разделяемыми линиями связи являются сети с топологией «общая шина», в которых один кабель совместно используется всеми компьютерами сети. Ни один из компьютеров сети в принципе не может индивидуально, независимо от всех других компьютеров сети, использовать кабель, так как при одновременной передаче данных сразу несколькими узлами сигналы смешиваются и искажаются. В топологиях «кольцо» или «звезда» индивидуальное использование линий связи, соединяющих компьютеры, принципиально возможно, но эти кабели часто также рассматривают как разделяемые для всех компьютеров сети, так что, например, только один компьютер кольца имеет право в данный момент времени отправлять по кольцу пакеты другим компьютерам.

В локальных сетях разделяемые среды применяются достаточно часто. В глобальных сетях разделяемые между интерфейсами среды практически не используются. Это объясняется тем, что при большой протяжённости каналов связи возникают большие временные задержки распространения сигналов, сокращая до неприемлемого уровня долю полезного использования каналов связи на передачу данных абонентов. В последнее время наметилась тенденция отказа от разделяемых сред и в локальных сетях. Сеть с разделяемой средой при большом количестве узлов всегда будет работать медленнее, чем аналогичная сеть с индивидуальными линиями связи. За удешевление сети приходится расплачиваться снижением производительности.

В сетях с небольшим (10-30) количеством компьютеров чаще всего используется одна из типовых топологий — общая шина, кольцо, звезда или полней связная сеть. Все перечисленные топологии обладают свойством однородности, то есть все компьютеры в такой сети имеют одинаковые права в отношении доступа к другим компьютерам (за исключением центрального компьютера при соединении звезда). Такая однородность структуры делает простой процедуру наращивания числа компьютеров, облегчает обслуживание и эксплуатацию сети.

Однако при построении больших сетей однородная структура связей превращается из преимущества в недостаток. В таких сетях использование типовых структур порождает различные ограничения, важнейшими из которых являются:

· ограничения на длину связи между узлами;

· ограничения на количество узлов в сети;

· ограничения на интенсивность трафика, порождаемого узлами сети.

Например, технология Ethernet на тонком коаксиальном кабеле позволяет использовать кабель длиной не более 185 м, к которому можно подключить не более 30 компьютеров. Однако, если компьютеры интенсивно обмениваются и формацией между собой, иногда приходится снижать число подключенных к кабелю компьютеров до 20, а то и до 10, чтобы каждому компьютеру доставалалась приемлемая доля общей пропускной способности сети.

Для снятия ограничений на длину сети и количество её узлов используется физическая структуризация сети с помощью повторителей и концентраторов. Для повышения производительности и безопасности сети используется логическая структуризация сети, состоящая в разбиении сети на сегменты таким образом, что основная часть трафика компьютеров каждого сегмента не выходит за пределы этого сегмента. Средствами логической структуризации служат мосты, коммутаторы, маршрутизаторы и шлюзы.

Как уже упоминалось, различают топологию физических связей (физическую структуру сети) и топологию логических связей (логическую структуру сети). Под физической топологией понимается конфигурация связей, образованных отдельными частями кабеля, а под логической — конфигурация информационных потоков между компьютерами сети. Во многих случаях физическая и логическая топологии сети совпадают.

Для физического соединения различных сегментов кабеля локальной сети с целью увеличения общей длины сети используются такие коммуникационные устройства как повторители и концентраторы. Простейшее из коммуникационных устройств — повторитель (repeator) передаёт сигналы, приходящие из одного сегмента сети, в другие её сегменты. Повторитель позволяет преодолеть ограничения на длину линий связи за счет улучшения качества передаваемого сигнала — восстановления его мощности и амплитуды, улучшения фронтов и т. п.

Повторитель, который имеет несколько портов и соединяет несколько физических сегментов, часто называют концентратором (concentrator), или хабом (hub). Эти названия (hub — основа, центр деятельности) отражают тот факт, что в данном устройстве сосредоточиваются все связи между сегментами сети.

Концентраторы характерны практически для всех базовых технологий локальных сетей — Ethernet, ArcNet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN.

Нужно подчеркнуть, что в работе концентраторов любых технологий много общего – они повторяют сигналы, пришедшие с одного из своих портов, на других своих портах. Добавление в сеть концентратора всегда изменяет ее физическую топологию, но при этом оставляет без изменения логическую топологию.

Физическая структуризация сети с помощью концентраторов полезна не только для увеличения расстояния между узлами сети, но и для повышения её надежности. Например, при сбоях в работе сети концентратор автоматически отключает свой порт, если обнаруживает, что присоединенный к нему узел слишком долго монопольно занимает сеть. Концентратор может блокировать некорректно работающий узел и в других случаях, выполняя роль некоторого управляющего узла.

Физическая структуризация сети полезна во многих отношениях, однако в ряде случаев, обычно относящихся к сетям большого и среднего размера, невозможно обойтись без логической структуризации сети. Наиболее важной проблемой, не решаемой путем физической структуризации, остается проблема перераспределения передаваемого трафика между различными физическими сегментами сети. В большой сети естественным образом возникает неоднородность информационных потоков: сеть состоит из множества подсетей рабочих групп, отделов, филиалов предприятия и других административных образований. В одних случаях наиболее интенсивный обмен данными наблюдается между компьютерами, принадлежащими к одной подсети, и только небольшая часть обращений происходит к ресурсам компьютеров, находящихся вне локальных рабочих групп. На других предприятиях, особенно там, где имеются централизованные хранилища корпоративных данных, активно используемые всеми сотрудниками предприятия, наблюдается обратная ситуация: интенсивность внешних обращений выше интенсивности обмена между «соседними» машинами. Но независимо от того, в какой пропорции распределяются внешний и внутренний трафики, для повышения эффективности работы сети неоднородность информационных потоков необходимо учитывать.

Сеть с типовой топологией (шина, кольцо, звезда), в которой все физические сегменты рассматриваются в качестве одной разделяемой среды, оказывается неадекватной структуре информационных потоков в большой сети. Например, в сети с общей шиной взаимодействие любой пары компьютеров занимает её на все время обмена, поэтому при увеличении числа компьютеров в сети шина становится узким местом. Компьютеры одного отдела вынуждены ждать, когда окончит обмен пара компьютеров другого отдела, и это при том, что необходимость в связи между компьютерами двух разных отделов возникает гораздо реже и требует совсем небольшой пропускной способности.

Такая ситуация возникает из-за того, что логическая структура данной сети осталась однородной — она никак не учитывает увеличение интенсивности трафика внутри отдела и предоставляет всем парам компьютеров равные возможности по обмену информацией.

 

Отдел 1 Концентратор Концентратор Отдел 3

 

Концентратор Рабочая группа А

 

 

Рабочая группа В

Концентратор Концентратор

 

Физическая структуризация сети с помощью моста

Для повышения производительности и безопасности сети используется логическая структуризация сети, состоящая в разбиении сети на сегменты таким образом, что основная часть трафика компьютеров каждого сегмента не выходит за пределы этого сегмента. Распространение трафика, предназначенного для компьютеров некоторого сегмента сети, только в пределах этого сегмента называется локализацией трафика. Средствами логической структуризации служат такие коммуникационные устройства, как мосты, коммутаторы, маршрутизаторы и шлюзы.

Мост (bridge) – это устройство, соединяющее две одинаковые сети в пределах ограниченного пространства и использующие одинаковые методы передачи данных. Мост может соединять сети разных топологий, но работающие под управлением однотипных сетевых операционных систем. Мост делит разделяемую среду передачи сети на части (часто называемые логическими сегментами), передавая информацию из одного сегмента в другой только в том случае, если такая передача действительно необходима, то есть если адрес компьютера назначения принадлежит другой подсети. Тем самым мост изолирует трафик одной подсети от трафика другой, повышая общую производительность передачи данных в сети. Локализация трафика не только экономит пропускную способность, но и уменьшает возможность несанкционированного доступа к данным.

 

 

Логическая структуризация сети с помощью моста

 

Коммутатор (switch) по принципу обработки данных ничем не отличается от моста. Основное его отличие от моста состоит в том, что он является своего рода коммуникационным мультипроцессором, так как каждый его порт оснащен специализированным процессором, который обрабатывает данные по алгоритму моста независимо от процессоров других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что коммутаторы — это мосты нового поколения, которые обрабатывают данные в параллельном режиме.

Сеть сложной конфигурации, представляющая собой соединение нескольких сетей, нуждается в специальном устройстве. Задача этого устройства — отправить сообщение в нужную сеть. Такое устройство называется маршрутизатором или роутером. Маршрутизатор — это устройство, соединяющее сети разного типа, но использующие одну операционную систему. Кроме того, маршрутизатор обеспечивает балансировку нагрузки в сети, перенаправляя потоки сообщений по свободным каналам связи.

Маршрутизаторы более надежно и более эффективно, чем мосты, изолируют трафик отдельных частей сети друг от друга. Маршрутизаторы образуют логические сегменты посредством явной адресации, поскольку используют не плоские аппаратные, а составные числовые адреса. В этих адресах имеется поле номера сети, так что все компьютеры, у которых значение этого поля одинаково, принадлежат к одному сегменту, называемому в данном случае подсетью (subnet). Важной особенностью маршрутизаторов является их способность связывать в единую сеть подсети, построенные с использованием разных сетевых технологий.

Для объединения ЛВС совершенно различного типа, работающих по существенно отличающимся друг от друга протоколам, предусмотрены специальные устройства — шлюзы. Шлюз (gateway) — это устройство, позволяющее организовать обмен данными между двумя сетями, использующими различные протоколы взаимодействия. Обычно основной причиной, по которой в сети используют шлюз, является необходимость соединить сети с разными типами системного и прикладного программного обеспечения, а не желание локализовать трафик. Тем не менее, шлюз обеспечивает и локализацию трафика в качестве некоторого побочного эффекта. Шлюз осуществляет свои функции на уровне выше сетевого. С помощью шлюзов можно локальную сеть подключить к глобальной.

Крупные сети практически никогда не строятся без логической структуризации. Для отдельных сегментов и подсетей характерны типовые однородные топологии базовых технологий, а для их объединения всегда используется оборудование, обеспечивающее локализацию трафика. Мосты, маршрутизаторы и шлюзы конструктивно выполняются в виде плат, которые устанавливаются на компьютерах.

 

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...