Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Практическое занятие №7




Наименование: Сравнительный анализ маркерного метода доступа

1. Цель: Изучить маркерный метод доступа на примере сетей Token Ring и FDDI

 

2. Подготовка к занятию: по предложенной литературе повторить тему «Сети Token Ring и FDDI» и ответить на следующие вопросы:

2.1 Какой метод доступа используется в сетях Token Ring и FDDI?

2.2 На каких скоростях работают сети Token Ring и FDDI?

2.3 За счет чего в сетях FDDI скорость намного выше, чем в сетях Token Ring?

 

3. Литература:

3.1 Бикбова Л.Р. Инфокоммуникационные системы и сети, конспект лекций, 2012

3.2 Шомас Е.А. Учебно – методическое пособие Современные сетевые технологии», Гриф УМЦ СПО, 2011

3.3 Олифер В.Г., Олифер Н.А. Основы компьютерных сетей. – СПб.: Питер, 2009. – 352 с.: ил.

3.4 Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы: учебник для вузов. 3-е изд. _ СПб.: Питер, 2009 с.: ил.

 

4. Перечень оборудования и программного обеспечения:

4.1 ПЭВМ, подключенные к сети Интернет

 

5. Задание:

5.1 Изучить технологию Token Ring. Зарисовать рисунок и описать, как будет передаваться маркер и данные согласно своему варианту.

№ варианта Количество станций в кольце Передающая станция Принимающая станция Активный монитор Скорость передачи
    №1 №6 №7 4Мбит/с
    №2 №7 №8 4Мбит/с
    №3 №8 №9 16Мбит/с
    №4 №5 №2 16Мбит/с
    №5 №9 №3 4Мбит/с
    №6 №10 №4 4Мбит/с
    №7 №1 №5 16Мбит/с
    №9 №2 №6 16Мбит/с
    №10 №3 №8 4Мбит/с
    №8 №4 №6 4Мбит/с

5.2 Сеть Token Ring состоит из 100 станций, длина кольца равна 2000м. Скорость передачи данных составляет 16 Мбит/с. Время удержания маркера выбрано 10 мс. Каждая станция передает кадры фиксированного размера в 4000 байт и полностью использует время удержания маркера для передачи своих кадров. Подсчитайте, какой выигрыш дает механизм раннего освобождения маркера для этой сети.

5.3 Изучить технологию FDDI. Зарисовать, как происходит реконфигурация сети при обрыве кабеля.

5.4 Записать в таблицу основные характеристики сетей Token Ring и FDDI.

Характеристика Технология Token Ring Технология FDDI
Скорость передачи данных    
Максимальная длина кольца    
Максим. число станций в кольце    
Время удержания маркера    
Среда передачи данных    

 

6. Порядок выполнения работы:

6.1 По предложенной литературе изучить необходимый материал и ответить на вопросы для допуска к практическому занятию;

6.2 Выполнить задание практического занятия;

6.3 Дать ответы на контрольные вопросы;

 

7. Содержание отчета:

7.1 Наименование и цель работы

7.2 Выполненное задание

7.3 Ответы на контрольные вопросы

7.4 Вывод о проделанной работе

 

8. Контрольные вопросы:

8.1 Какие функции выполняет активный монитор в технологии Token Ring?

8.2 Какие цели преследовали разработчики технологии FDDI и как они эти цели достигли?

8.3 Чем заменили приоритеты кадров технологии Token Ring в технологии FDDI?

 

ПРИЛОЖЕНИЕ:

Сети Token Ring характеризует разделяемая среда передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс для доступа к которому требуется наличие права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером или токеном (token).

Сети Token Ring работают с двумя битовыми скоростями - 4 и 16 Мбит/с. Сети Token Ring, работающие со скоростью 16 Мбит/с, имеют некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мбит/с.

Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса, Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Чтобы сеть могла обнаружить отказ активного монитора, последний в работоспособном состоянии каждые 3 секунды генерирует специальный кадр своего присутствия. Если этот кадр не появляется в сети более 7 секунд, то остальные станции сети начинают процедуру выборов нового активного монитора.

Для обеспечения доступа станций к физической среде по кольцу циркулирует кадр специального формата и назначения - маркер. Получив маркер, станция анализирует его и при отсутствии у нее данных для передачи обеспечивает его продвижение к следующей станции. Станция, которая имеет данные для передачи, при получении маркера изымает его из кольца, что дает ей право доступа к физической среде и передачи своих данных. Затем эта станция выдает в кольцо кадр данных установленного формата последовательно по битам. Переданные данные проходят по кольцу всегда в одном направлении от одной станции к другой. Кадр снабжен адресом назначения и адресом источника.

Все станции кольца ретранслируют кадр побитно, как повторители. Если кадр проходит через станцию назначения, то, распознав свой адрес, эта станция копирует кадр в свой внутренний буфер и вставляет в кадр признак подтверждения приема. Станция, выдавшая кадр данных в кольцо, при обратном его получении с подтверждением приема изымает этот кадр из кольца и передает в сеть новый маркер для обеспечения возможности другим станциям сети передавать данные. Такой алгоритм доступа применяется в сетях Token Ring со скоростью работы 4 Мбит/с, описанных в стандарте 802.5.

На рис. 1 описанный алгоритм доступа к среде иллюстрируется временной диаграммой. Здесь показана передача пакета А в кольце, состоящем из 6 станций, от станции 1 к станции 3. После прохождения станции назначения 3 в пакете А устанавливаются два признака - признак распознавания адреса и признак копирования пакета в буфер (что на рисунке отмечено звездочкой внутри пакета). После возвращения пакета в станцию 1 отправитель распознает свой пакет по адресу источника и удаляет пакет из кольца. Установленные станцией 3 признаки говорят станции-отправителю о том, что пакет дошел до адресата и был успешно скопирован им в свой буфер.

Рис. 1. Принцип маркерного доступа

Время владения разделяемой средой в сети Token Ring ограничивается временем удержания маркера, после истечения которого станция обязана прекратить передачу собственных данных и передать маркер далее по кольцу. Станция может успеть передать за время удержания маркера один или несколько кадров в зависимости от размера кадров и величины времени удержания маркера. Обычно время удержания маркера по умолчанию равно 10 мс, а максимальный размер кадра в стандарте 802.5 не определен. Для сетей 4 Мбит/с он обычно равен 4 Кбайт, а для сетей 16 Мбит/с - 16 Кбайт. Это связано с тем, что за время удержания маркера станция должна успеть передать хотя бы один кадр. При скорости 4 Мбит/с за время 10 мс можно передать 5000 байт, а при скорости 16 Мбит/с - соответственно 20 000 байт. Максимальные размеры кадра выбраны с некоторым запасом.

В сетях Token Ring 16 Мбит/с используется также несколько другой алгоритм доступа к кольцу, называемый алгоритмом раннего освобождения маркера. В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема.

Для различных видов сообщений, передаваемым кадрам, могут назначаться различные приоритеты: от 0 (низший) до 7 (высший). Решение о приоритете конкретного кадра принимает передающая станция. Маркер также всегда имеет некоторый уровень текущего приоритета. Станция имеет право захватить переданный ей маркер только в том случае, если приоритет кадра, который она хочет передать, выше (или равен) приоритета маркера. В противном случае станция обязана передать маркер следующей по кольцу станции.

Технология FDDI (Fiber Distributed Data Interface) - оптоволоконный интерфейс распределенных данных - это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

· повысить битовую скорость передачи данных до 100 Мбит/с;

· повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

· максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.


Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...