Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Географические информационные системы




Использование ГИС технологий для оценки загрязнения окружающей среды на примере г.Ялта

Каракаш Д
Содержание

Введение  
1 Географические информационные системы  
1.1 История создания ГИС  
1.2 Понятие географических информационных систем  
1.3 Классификация и функции ГИС  
1.4 Карты и атласы  
1.5 Источники данных для ГИС  
1.6 ГИС «Черное море»  
2 Картографирование техногенных аномалий  
2.1 Сущность геохимической оценки аномалий  
2.2 Карты для геохимической оценки территорий  
2.3 Геоинформационное картографирование  
3 Эколого-практическое применение геоинформационной системыArcView9 (создание карты-схемы загрязнения атмосферного воздуха города Ялты, от стационарных источников)  
3.1 Краткая характеристика населенного пункта.  
3.2 Влияние загрязнения тяжелыми металлами на организм человека  
3.3 Загрязнение территории города Ялты тяжелыми металлами  
3.4 Применение геоинформационной системы Агс^в 9 для оценки загрязнения тяжелыми металлами города Ялта  
Выводы  
Заключение  
Список литературы  
Приложения  

ВВЕДЕНИЕ

На сегодняшний день особую тревогу вызывает антропогенное загрязнение атмосферы городов в результате постоянно увеличивающихся объемов выбросов автотранспорта и деятельности промышленных предприятий. Для эффективного управления качеством воздушной среды города необходима разработка муниципального ГИС-приложения, предназначенного обеспечить полную информационную поддержку принятия решений в области управления качеством атмосферы города и отдельных промышленных зон.

Информатизация коснулась сегодня всех сторон жизни общества, и трудно, пожалуй, назвать какую-либо сферу человеческой деятельности - от начального школьного образования до высокой государственной политики, - где не ощущалось бы ее мощное воздействие. Информатика дышит в затылок всем наукам, догоняя и увлекая их за собой, преобразуя, а порой и порабощая в стремлении к бесконечному компьютерному совершенству.[23]

В науках о Земле информационные технологии породили геоинформатику и географические информационные системы (ГИС), причем слово "географические" обозначает в данном случае не столько "пространственность" или "территориальность", а скорее комплексность и системность исследовательского похода.

Первые ГИС были созданы в Канаде и США в середине 60-х годов, а сейчас в промышленно развитых странах существуют тысячи ГИС, используемых в экономике, политике, экологии, управлении ресурсами и охране природы, кадастре, науке и образовании. ГИС охватывают все пространственные уровни: глобальный, региональный, национальный, локальный, муниципальный, интегрируя разнообразную информацию о нашей планете: картографическую, данные дистанционного зондирования, статистику и переписи, кадастровые сведения, гидрометеорологические данные, материалы полевых экспедиционных наблюдений, результаты бурения и подводного зондирования.

В создании ГИС участвуют международные организаций (Организация объединенных наций, Программа по окружающей среде, Продовольственная программа), правительственные учреждения, министерства и ведомства, картографические, геологические и земельные службы, статистические управления, частные фирмы, научно-исследовательские институты и университеты. На разработку ГИС ассигнуют значительные финансовые средства, в деле участвуют целые отрасли промышленности, создается разветвленная геоинформационная инфраструктура, сопряженная с телекоммуникационными сетями.

Во многих странах образованы национальные и региональные органы, в задачи которых входит развитие ГИС и автоматизированного картографирования, формирование государственной политики в области геоинформатики, национального планирования, сбора и распространения информации, включая и исследование правовых проблем, связанных с владением и передачей географической информации, с ее защитой.

Сущность ГИС состоит в том, что она позволяет так или иначе собирать данные, создавать базы данных, вводить их в компьютерные системы, хранить, обрабатывать, преобразовывать и выдавать по запросу пользователя чаще всего в картографической форме, а также в виде таблиц, графиков, текстов.

Повсеместность использования ГИС привела к многообразию толкований самого понятия. В научной литературе бытуют десятки определений ГИС, в них отмечается, что ГИС - это аппаратно- программный и одновременно человеко-машинный комплекс, обеспечивающий сбор, обработку, отображение и распространение пространственно-координированных данных, интеграцию данных и знаний о территории для их эффективного использования при решении научных и прикладных задач, связанных с инвентаризацией, анализом, моделированием, прогнозированием и управлением окружающей средой и территориальной организацией общества. Такая несколько тяжеловесная дефиниция верно отражает многие свойства ГИС, используемых в географии, геологии, экологии и других отраслях знания, но все же не является исчерпывающей. Попытка охватить в определении все функциональные, технологические и прикладные свойства ГИС неизбежно оборачивается неполнотой. Можно предложить несколько других толкований, характеризующих разные аспекты ГИС.

С научной точки зрения ГИС - это средство моделирования и познания природных и социально-экономических систем. ГИС применяется для исследования всех тех природных, общественных и природно-общественных объектов и явлений, которые изучают науки о Земле и смежные с ними социально-экономические науки, а также картография, дистанционное зондирование. В технологическом аспекте ГИС (ГИС-технология) предстает как средство сбора, хранения, преобразования, отображения и распространения пространственно- координированной географической (геологической, экологической) информации. И наконец, с производственной точки зрения ГИС является комплексом аппаратных устройств и программных продуктов(ГИС-оболочек), предназначенных для обеспечения управления и принятия решений, причем важнейший элемент этого комплекса - автоматические картографические системы. Таким образом, ГИС может одновременно рассматриваться как инструмент научного исследования, технология и продукт ГИС-индустрии. Это достаточно типичная ситуация на современном уровне научно-технического прогресса, характеризующегося интеграцией науки и производства [13].

Целью моей работы было изучение возможностей ГИС- технологий при оценке уровня загрязнения городских территорий. Для решения данной цели были поставлены следующие задачи;

1) Дать общую характеристику геоинформационным системам;

2) Выявить загрязнения атмосферного воздуха города Ялты, от стационарных источников;

3) Разработать карту-схему загрязнения атмосферного воздуха города Ялты, от стационарных источников при помощи геоинформационной Системы ArcView9


ГЕОГРАФИЧЕСКИЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ

История создания ГИС

Географические информационные системы появились в 1960х годах как инструмент для отображения географии Земли и расположенных на ее поверхности объектов, используя компьютерные базы данных. Следы самой первой геоинформационной системы теряются в недрах Министерства обороны США, сотрудники которого использовали ГИС для того, чтобы ракета, летящая в сторону противника, попала в этого самого противника как можно точнее. Правда, существует и альтернативная версия - согласно ей, первая ГИС была создана в Канаде.

Как и в случае с Интернет, мирные применения ждать себя не заставили. В начале 70х годов ГИС начали использоваться для вывода координатно-привязанных данных на экран монитора и для печати карт на бумаге, чем значительно облегчили жизнь специалистам, прежде занятых традиционной бумажной картографией. До появления подобных систем карты анализировались согласно следующей инструкции: «..гидрологическую, растительную и почвенную карты положить одна на другую, тщательно следя за тем, чтобы объекты на каждой карте совпадали. Всю пачку положить на яркий источник света, например, окно».

В это же время появились первые компании, специализирующиеся на разработке и продаже систем для компьютерного картографирования и анализа. Сегодня две крупнейшие компании - разработчики ГИС могут проследить путь с тех времен, хотя поначалу каждая из них делала упор на различных аспектах технологии. Внимание компании Intergraph Corp., главный офис которой расположен в Хантсвилле, штат Алабама, было сфокусировано на эффективном вводе и хранении пространственных данных и на подготовке к печати карт, созданных компьютером, которые соперничали бы по картографическому качеству с традиционными бумажными картами. Внимание Environment Systems Research Institute (ESRI), главный офис которой расположен в Редланде, штат Калифорния, было сфокусировано на разработке процедур и функций для анализа данных в ГИС. За годы, прошедшие с той поры, обе компании практически сравняли возможности своих систем. [14]

В начале только самые крупные государственные организации, коммунальные службы и корпорации могли позволить себе использовать ГИС из-за их высокой цены. ГИС работали на мэйнфреймах и ми ни компьютерах и типичная рабочая станция с установленной на ней ГИС стоила больше, чем 100 тыс. долларов (если учитывать все аппаратное и программное обеспечение и затраты на обучение персонала). Тем не менее, в 80х годах рынок ГИС быстро рос, в основном за счет того, что многие журналы и профессиональные ассоциации пропагандировали преимущества, которые дают геоинформационные системы. В 8Ох также появились системы управления пространственными базами данных, целью которых было связать системы управления базами данных и компьютерное картографирование. В этих системах пользователь уже мог, указав на объект на карте, получить некую содержательную информацию. Спрос на тематическую картографическую информацию заставил обратить внимание на проблему сбора данных. Результатом стала интегрированная среда данные дистанционного зондирования, цифровая модель местности, карта дорог, геологическая карта и все прочие виды и типы карт мирно сосуществовали в рамках одной системы.

Основной прорыв, тем не менее, произошел с появлением персональных компьютеров. ГИС быстро адаптировались к этой новой, более дешевой платформе и цена систем начала падать по мере того, как число пользователей и организаций, которые могли бы позволить себе ГИС, увеличивалось. Согласно Dataquest, мировой рынок ГИС-продуктов и услуг составил в 1997 году 2,5 млрд. долларов, разделенный примерно пополам между продажами в Северной Америке и во всем остальном мире, и растущий примерно на 15 % в год. [14].

Впервые термин «географическая информационная система» появился в англоязычной литературе и использовался в двух вариантах, таких, как geographic information system и geographical information system, очень скоро он также получил сокращенное наименование (аббревиатуру) G1S. Чуть позже этот термин проник в российский научный лексикон, где существует в двух равнозначных формах: исходной полной в виде «географической информационной системы» и редуцированной в виде «геоинформационной системы».

Очень кратко ГИС определялись как информационные системы, обеспечивающие сбор, хранение, обработку, отображение и распространение данных, а также получение на их основе новой информации н знаний о пространственно- координированных явлениях [17].
1.2 Понятие географических информационных систем

Термины «данные», «информация» и «знания» стали общеупот-ребительными, постоянно встречаясь в газетах, теле- и радиопередачах, научных и научно-популярных публикациях. Смысл их кажется предельно ясным, и они легко заменяются не только в быту, но и науке такими словами, как «сообщения», «сведения», «сигнал», «материалы» и др. При этом не обращают внимания на то, что эти понятия, имея много общего, заметно разнятся по своей сути.

Под «данными» понимается совокупность фактов и сведений, представленных в каком-либо формализованном виде (в количественном или качественном выражении) для их использования в науке или других сферах человеческой деятельности. Иначе говоря: «Данные соответствуют дискретным зарегистрированным фактам относительно явлений, в результате чего мы получаем информацию о реальном мире... Слово «данные» происходит от латинского «datum», буквально означающего «факт». Тем не менее данные не всегда соответствуют конкретным или действительным фактам. Иногда они неточны или описывают нечто, не имеющее место в реальной действительности (идею). Будем называть «данными» описание любого явления (или идеи), которое представляется достаточно ценным для того, чтобы его сформулировать и точно зафиксировать» [7].

Применительно к характеризуемой нами сфере «данные» можно рассматривать и определять в трех контекстах: вне автоматизированной среды использования, внутри ее и в среде ГИС. В первых двух контекстах под «данными» понимаются либо факты, некие известные вещи (из которых могут быть выведены заключения), либо сведения, подготовленные для компьютерной обработки. Под «данными» в среде ГИС понимаются «объекты о явлениях реального мира; результаты наблюдений и измерений этих объектов. Элемент данных содержит три главные компоненты: атрибутивные сведения, которые описывают сущность (семантику), характеристики, переменные, значения и тому подобные его квалификации; географические сведения, характеризующие его положение в пространстве относительно других данных; временные сведения, описывающие момент или период времени, для которого предоставляются данные» [The 1990-GIS Sourcebook, 1990. -— P. А10]. «Данные», по определению М. Конечного и К. Раиса [М. Копеспу, К. Rais, 1985], выступают как сырье, которое путем обработки можно превратить в информацию, т. е. данные — это как бы строительный элемент в процессе создания информации. Они рассматриваются как объект обработки и основа для получения информации.

В практическое понимание «информации» в настоящее время в основном включаются «процессы обмена разнообразными сведениями между людьми, человеком и автоматом — актуальная информация, процессы взаимодействия объектов неживой природы потенциальная информация, степень сложности, организованности, упорядоченности той или иной системы» [Краткий словарь..., 1979 - С. 114-115] Такое понимание основывается на существовании в современной науке нескольких парадигм, которые с разных сторон стараются объяснить факты и явления информационного порядка. Кратко рассмотрим основные из них.

К первой (по времени возникновения) надо отнести теорию К Шеннона, согласно которой количество информации определяют по формуле:

I= -Е Pilog2Pj

где I - количество информации; р, — вероятность появления 1-го сигнала; п — количество всех возможных сигналов. У этой теории есть значительный недостаток — она не учитывает содержательную сторону информации. Как отмечал Л.Бриллюен: «совокупность из 100 букв, выбранных случайным образом..., фраза в 100 букв из газеты, пьесы Шекспира или теоремы Эйнштейна имеют в точности одинаковое количество информации» [7].

Сторонники других (физических) концепций считают, что информация — фундаментальная категория (понятие) [Д. И. Блюме- нау, 1989. С. 15], т.е. такая же основа мироздания, как вещество или энергия. Подобные воззрения характерны, например, для Н. Винера: «...информация есть информация, а не материя и не энергия» (цит. по [М. Мазур, 1974.—С. 18]).

Также по-разному представляют основные принципы понятия «информация» и философы. По мнению одних, информация существует лишь при коммуникативных процессах с участием человека [Д. И. Блюменау, 1989]. Другие полагают существование и потенциальной информации (при взаимодействии между собой объектов неживой природы) [Краткий словарь..., 1979. —С. 114—115].

Необходимо отметить, что количество концепций и парадигм довольно велико. Тем не менее складывается парадоксальная ситуация — разработаны количественные методы вычисления информации, имеется множество определений понятия «информация», но при этом существующие теории не дают адекватного, качественного понимания ее смысловой сущности, когда производят расчет количества информации. Иными словами, количественная сторона проблемы относительно развита, но не обеспечена качественным пониманием объекта вычисления.

В чем же все-таки заключается проблема определения и понимания информации? Исходя из принципа Винера, предположим, что информация действительно присуща всему в нашем мире. В подтверждение того, что информация может быть по значению сравнима с веществом и энергией, приведем следующие аналогии [ В.С.Тикунов, 1992].

Информацию, как и вещество, и энергию, можно передавать и принимать, накапливать, использовать.

1. Предположим также, что существование информации объективно, не зависит от наших знаний, а восприятие — субъективно и определяется умением пользоваться той или иной знаковой системой (или хотя бы знаниями о ее существовании).

2. Физические объекты и явления (например, материальное тело имеют множество характеристик: высота, длина, плотность, упругость, масса, вес и т.д., но нет

Одной универсальной. Можно предположить,что и информация может описываться самыми разнообразными характеристиками и нельзя ограничиваться только вычислениями ее количества.

3. Вполне вероятно (пока это не более, чем гипотеза) наличие двух основных законов: а) закона сохранения информации, который должен формулироваться аналогично законам сохранения массы и энергии; б) закона взаимодействия двух объектов, обладающих информацией (возможно, он будет иметь такую же алгебраическую формулу, как и законы Ньютона и Кулона).

Анализируя и обобщая многие определения информации, сделаем следующий вывод-определение: информация — все, что может быть сообщено. При этом основное различие внутри этого понятия состоит не в информации живой (и неживой) природы и человека, а в существующей (наличествующей) и передаваемой информации. Существующая информация — сведения, которые можно сообщить о каком-то объекте (явлении), некоторое подобие потенциальной энергии. Передаваемая информация — сообщаемые по каналу информации сведения, это в определенной степени аналог кинетической энергии (рис. 1). Хотя потенциальная энергия Ер может перейти полностью в кинетическую Ею а существующая информация по-иному связана с передаваемой, все же некоторая аналогия между энергией и информацией просматривается. Передаваемая информация зависит от более или менее удачно подобранных знаковых систем и отдельных знаков, существующая же информация объективна и определяется только тем объектом или явлением, в котором заключена. Перейдем теперь к понятию «знание». Определений «знания» также много, как и определений «информации». Так, Л. Бриллюен считает, что информация отлична от знания' «Для которого у нас нет количественной потенциальной меРы>> [л Бриллюен, 1960. — С. 30]. Д. И.Блюменау энергии в кине- приводит 10 (!) определений понятия «знание» тическую различных авторов, и сам определяет информацию как знание, включенное непосредственно в коммуникативный процесс [Д. И. Блюменау, 1989. — С. 28]. Последнее предложение необходимо дополнить: включенное субъективно в субъективный процесс, т е. знания — это интерпретация информации. Однако интерпретация в известном смысле не ограничивается знанием и этот ряд полностью будет, вероятно, выглядеть следующим образом: информация — знание — мысль (гипотеза).

«Знания» в философском их понимании — отражение семантических аспектов окружающей действительности в мозгу человека или даже в технической системе. Отметим также историческую последовательность привлечения данных, информации и знаний в геоинформатике. Так, вначале появились банки данных, позднее оформились географические информационные системы и, наконец, появились системы, основанные на знаниях, - интеллектуальные системы.

Возвращаясь непосредственно к геоинформационным системам, важно подчеркнуть их способность хранить и обрабатывать пространственные, или географические, данные, что и отличает ГИС от иных информационных систем. Распространено мнение, утверждающее тождественность понятий «географические информационные системы» и «пространственные (пространственно-координированные, пространственно распределенные) информационные системы», т.е. слово «географические» в данном контексте имеет смысл не обозначения науки, а характеристики пространственно-сти. При таком подходе нельзя поставить в один ряд с географическими системами геологические, геофизические и другие системы, что также встречается в литературе. Они все являются пространственными, а следовательно, и географическими. Естественно и то, что ГИС объединяет в единую систему пространственную информацию и информацию других типов для решения пространственных задач.

ГИС различаются предметной областью информационного моделирования; среди предметно-ориентированных, как правило, ведомственных ГИС бывают природоохранные ГИС, земельные информационные системы (ЗИС), городские, или муниципальные, ГИС (МГИС), ГИС для целей предотвращения и локализации последствий чрезвычайных ситуаций (ГИС для целей ЧС) и др.

Проблемная ориентация ГИС определяется решаемыми в ней научными и прикладными задачами. Они могут быть выстроены в ряд по мере усложнения и наращивания возможностей управления моделируемыми объектами и процессами: инвентаризация (кадастр, паспортизация) объектов и ресурсов, анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. [7]


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...