Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Приборы для определения параметров микроклимата




Для измерения давления воздуха применяются различного вида барометры. Наиболее распространенным прибором для измерения давления воздуха является металлический барометр (анероид). В данной лабораторной работе используется барометр типа МД-49-А (Рис.4.1). Принцип его действия основан на деформации анероидной коробки в зависимости от атмосферного давления. При изменении атмосферного давления упругие деформации крышки коробки через рычажную систему пе­редаются в увеличенном масштабе стрелке-указателю, которая перемещается вдоль шкалы, градуированной в единицах давления (гПа и мм. рт. ст). Для непрерывной регистрации изменения во времени атмосферного давления применяют самопишущие приборы - барографы (от греч. baros - тяжесть, давление, вес и grapho - пишу).

Для измерения температуры воздуха в производственных помещениях используют различного рода жидкостные термометры с ценой деления 0,2-0,5 °С. Для непрерывной регистрации температуры используют термографы (рис. 4.2) или термопары, подключенные к самопишущим приборам.

Измерительным элементом термографа (датчик температуры) является биметаллическая пластина или трубка Бурдона. Биметаллическая пластина - это пластинка из двух полос разнородных металлов, обладающих различными коэффициентами расширения. Трубка Бурдона представляет собой плоскую изогнутую металлическую трубку эллиптического сечения, заполненную спиртом или толуолом. Так как коэффициенты расширения самой трубки и жидкости, наполняющей её, различны, то она также, как и биметаллическая пластинка, при повышении температуры распрям­ляется, а при повышении скручивается. Один из концов измерительного элемента термографа закрепляется неподвижно, а другой, свободный конец, перемещается при деформациях, связанных с изменением температуры. Через систему рычагов эти перемещения передаются в увеличенном масштабе перу, которое на бумажной ленте, укрепленной на вращающемся барабане, осуществляет непрерывную запись изменения температур. Скорость вращения барабана - один оборот в неделю (или сутки). Горизонтальные деления на ленте показывают время, а вертикальные - температуру.

Электрические термометры обладают в некоторых отношениях рядом важных преимуществ по сравнению с жидкостными термометрами. Они позволяют производить наблюдения на расстоянии и обладают высокой чувствительностью. В настоящее время эти термометры стали все чаще внедряться в практику измерения температуры воздуха помещений. Средствами автоматики они обычно соединены с автоматическими установками кондиционирования воздуха. Существуют различные конструкции электрических термометров, однако, по принципу действия их можно разделить на два типа: термоэлектрические и термометры сопротивления.

Устройство термометров сопротивления основано на использовании свойства металлов изменять свое электрическое сопротивление в зависимости от температуры.

Действие термоэлектрических термометров основано на существо­вании контактной разности потенциалов между двумя соприкасающимися разнородными металлами.

При наличии в помещении заметных тепловых излучений для измерения температуры воздуха применяют парный термометр (рис. 4.3), состоящий из двух ртутных термометров. Резервуар со ртутью одного из термометров зачернён и поглощает тепловые лучи, а другого - посеребрён и отражает тепловые лучи. Истинную температуру (tИ)в этом случае определяют в оС по формуле:

, (4.3)

где tС , tЧ – показания посеребренного и зачерненного термометров, оС;

К – градуировочный фактор прибора, определяемый при его изготовлении (обычно К =0,1÷0,12).

Температуру поверхности измеряют контактными приборами (типа электротермометров) или дистанционными (пирометрами и др.).

Для измерения интенсивности теплового облучения используют актинометры, радиометры и др. В актинометре приёмником теплоты служит экран из чёрных и блестящих алюминиевых пластин, подключенных к термопарам, связанным с гальванометром. Прибор измеряет плотность теплового потока в Вт/м2.

Измерения относительной влажности производят психрометрами. Эти приборы представляют блок спаренных термометров (рис. 4.4 а). Шарик одного из термометров (правого) обернут тканью, смоченной в дистиллированной воде. При испарении воды затрачивается теплота, поэтому температура смоченного термометра ниже, чем сухого. Чем ниже относительная влажность воздуха, тем больше разность показаний сухого и мокрого термометра.

По температуре сухого и смоченного термометров (разности их показаний), пользуясь формулами, таблицами, диаграммами или номограммами (рис. 4.10), определяют относительную влажность воздуха.

А б

Рис. 4.4. Психрометры:

а - психрометр Августа; б - аспирационный психрометр Ассмана

1- термометр «влажный»; 2 – термометр «сухой»; 3 - воздушный канал (воздуховод); 4 - головка с вентилятором.

В практике инженерных измерений чаще используют аспирационные психрометры (рис. 4.4 б). Они снабжены вентиляторами с пружинами или электрическим приводом, что позволяет создавать определенную скорость движения воздуха около шариков термометра, не зависящую от скорости воздушных потоков в помещении, и за счет этого повысить точность измерений.

В данной лабораторной работе для измерения температуры и влажности воздуха также используется прибор ТКА-ТА (рис. 4.5), принцип работы которого основан на преобразовании параметров сенсора влажности и напряжения датчика температуры в числовые значения измеряемых параметров, с отображением результатов измерений на жидкокристаллическом индикаторе. Датчиком температуры является полупроводниковый диод, питаемый постоянным током. Датчиком влажности является специальный сенсор, пара­метры которого зависят от значения измеряемой относитель­ной влажности окружающего воздуха.

Для постоянной регистрации изменений относительной влажности используют гигрографы с суточным или недельным заводом.

Скорость движения воздуха в рабочей зоне измеряют крыльчатыми анемометрами (рис. 4.6 б).

А б

Рис.4.6. Анемометры

а – чашечный, б - крыльчатый

Принцип их работы основан на изменении скорости вращения крыльчатки в зависимости от скорости движения воздуха. Количество оборотов крыльчатки за период измерения фиксируется стрелочно-циферблатным устройством анемометра. Скорость движения воздуха определяют по тарировочному графику (рис. 4.11).

В вентиляционных каналах и галереях, где скорость воздушных потоков превышает 2 м/с, используют чашечные анемометры (рис. 4.6 а), в которых приемной частью служат три (четыре) полушария, укрепленные на вертикальной оси. Вращение их отмечается счетчиком, шкала которого проградуированная в м/с.

Для измерения малых значений скорости движения воздуха используют термоанемометры различных конструкций или кататермометры.

Принцип работы термоанемометра, применяемого в данной лабораторной работе (рис. 4.7), основан на преобразовании параметров датчиков в числовые значения измеряемой скорости движения воздуха, с отображением результатов измерения на жидкокрис­таллическом индикаторе.

Кататермометр (рис. 4.8) представляет собой спиртовой термометр с шаровым резервуаром, который переходит в капилляр, заканчивающийся расширением в его верхней части. Шкала кататермометра градуирована от 33 до 40 °С.

Применение прибора основано на зависимости скорости охлаждения спиртового резервуара кататермометра от метеорологических условий, в частности от скорости движения воздуха. Количество теплоты, теряемое кататермометром при его охлаждении от 38 до 35 °С всегда при всех метеорологических условиях одинаково, меняется только скорость охлаждения, т. е. количество теплоты, теряемое в единицу времени. Оно зависит от сорта стекла, теплоемкости спирта, а потому различно для разных экземпляров приборов, но постоянно для одного и того же прибора. Постоянное для данного прибора количество тепла, теряемое 1 см2 поверхности спиртового резервуара кататермометра при охлаждении его с 38 до 35 °С, выраженное в милликалориях, называется фактором кататермометра. Его определяют при изготовлении кататермометра, обозначают буквой «F» и указывают на оборотной стороне шкалы кататермометра.


 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...