Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Симметричное и антисимметричное состояния.




Чтобы построить конкретные функции будем рассматривать ансамбль независимых частиц, т. е. они между собой не взаимодействуют, но могут находиться во внешнем поле.

Для i -ой частицы во внешнем поле:

Так как частицы одинаковые, то их массы одинаковые, т. е. .

Полный оператор

(51.1)

Для одинаковые аналитические выражения (закон один), но здесь разные координаты.

Когда оператор представим в виде (51.1), то можно провести разделение переменных

.

Тогда уравнение

разбивается на N одинаковых уравнений:

 

- волновая одночастичная функция.

- это набор квантовых чисел, характеризующих одночастичное состояние.

Тогда

(51.2)

- это все квантовые числа, относящиеся к рассматриваемому ансамблю.

Причем

,

где

.

Учтем действие оператора перестановки:

1) Рассмотрим симметричные состояния.

Однако из (51.2) при перестановке мы получаем другую функцию. Но в (51.2) функция еще не симметричная. Симметризуем ее:

Здесь сумма по всем нетождественным перестановкам частиц.

- постоянная нормировки

,

где

.

Рассмотрим случай двух частиц

Для данного случая

.

Так как бозоны могут находиться в неограниченном количестве в одном и том же состоянии, то здесь когда говорим о нетождественных состояниях, то имеем в виду, что эта перестановка приводит к новому состоянию.

Если перестановка происходит в одном и том же состоянии, то она тождественная и выбрасывается из рассмотрения. Для бозонов из N! перестановок тождественные перестановки. Тогда надо рассматривать перестановок, где N всего бозонов, а в 1-ом состоянии находится N1 частиц, во 2-ом N2 частиц и тд.

Симметричные состояния допускают произвольное число частиц в одночастичном состоянии.

Тогда нормировочный множитель

2. Рассмотрим антисимметричные состояния

Здесь

(51.3)

Чтобы учесть знак вводят понятие парной (соседней, элементарной) перестановки.

Пусть надо переставить в ряде цифры 1 и 4. Учтем элементарные перестановки:
2134, 2314, и т. д.

Здесь 5 элементарных перестановок. .

Тогда в сумму (51.3) надо поставить .

 

Если i и j в одном состоянии, то , => .

Антисимметричные состояния запрещают нахождение более одной частицы в одночастичном состоянии.

В сумме (51.3) оператор это оператор не элементарной перестановки, а какой-то конкретной перестановки.

Итак получаем из (51.3) выражение

Рассмотрим пару частиц, тогда

Эта функция обладает свойством антисимметричности. Подействуем на нее оператором перестановки:

,

т. е.

- собственная функция оператора перестановки.

Здесь т. к. у фермионов в каждом одночастичном состоянии число частиц не превышает 1, т. е. 0 или 1.

В наиболее общем виде

.

Обобщим

Из этого вида вытекает принцип Паули: не более одного фермиона может находиться в одном квантовом состоянии.

Допустим две частицы в одном квантовом состоянии, тогда у них совпадают квантовые числа, т. е. . Тогда для детерминанта имеем 2 одинаковые строки, он равен нулю. Состояние не реализуется.

 

 

Решения задач по курсу "Квантовая теория".

Задача 1. Рассмотреть следующие операторы

а) инверсии ;

б) трансляции ;

в) изменения масштаба ;

г) комплексного сопряжения .

 

Решение. Представим в форме

, где и . (1.1)

Учтем, что соотношения а-г (см. условие задачи) справедливы для каждой из функций , входящих в суперпозицию (1.1). Тогда имеем:

а)

;

б)

;

в)

;

г)

Таким образом, лишь последний из рассмотренных операторов не удовлетворяет свойству линейности.

 

Задача 2. Используя свойства

1. ; (2.1)

2. ; (2.2)

3. (2.3)

скалярного произведения

, . (2.4)

Доказать неравенство Коши-Шварца-Буняковского

. (2.5)

Решение. Запишем норму функции вида

, где -вещественное число .

Тогда из с учетом (2.1)-(2.3) найдем

.

Ввиду произвольности положительность нормы достигается при условии неположительности дискриминанта

,

поставленного в соответствие неравенству . Легко видеть, что из автоматически следует неравенство (2.5). Знак равенства в формуле (2.5) имеет место в том и только в том случае, когда функция и пропорциональны друг другу, т.е.

, .

 

Задача 3. Найти оператор , если

а) , ; , ;

б) , ; , .

Решение. Подставляя явный вид в правую часть и проводя интегрирование по частям, получим

а) ,

б) ,

.

Здесь использовано обращение функций и в нуль на бесконечности в случае (а) и условие периодичности функции и в случае (б). В обоих случаях оператор не совпадает с оператором .

 

Задача 4. Показать, что произвольный линейный оператор может быть представлен в виде

; , .

Решение. Легко видеть, что справедливо разложение на сумму

двух операторов, первый из которых является эрмитовым:

, ,

а второй – антиэрмитовым:

.

С их помощью будем иметь

; , ;

, .

Всякая линейная комбинация эрмитовых операторов с вещественными коэффициентами есть Эрмитов оператор. Произведение двух эрмитовых операторов не обязательно эрмитово.

 

Задача 5. Найти , если - произведение эрмитовых операторов и

Решение. Из определения имеем

;

, /

Отсюда с учетом эрмитовости и найдем

. (5.1)

Легко видеть, что в общем случае .

 

Задача 6. Показать, что при условии эрмитовости и операторы и , также эрмитовы.

Решение. Из решения задач 4 и 5 следует, что линейному оператору можно поставить в соответствие два самосопряженных оператора:

;

Эрмитовость операторов , и равенство (5.1) приводят к эрмитовости операторов и :

; .

 

Задача 7. Используя определение (7.1) и свойство (7.2), показать, что уравнение (7.3) имеет решение лишь для вещественного числа .

Решение. Подставляя

,

где - решение уравнения (7.3), в определение эрмитова оператора (7.1), запишем

.

Используя свойство (7.2), вынесем число , стоящее слева и справа от запятой, за знак скалярного произведения. Это дает

.

Сокращая на положительное число , получим

.

 

Задача 8. Доказать, что собственные функции эрмитова оператора с невырожденным дискретным спектром ортогональны.

Решение. В качестве функции и в определении рассмотрим и , являющиеся решениями уравнений

, (8.1)

соответственно. Воспользуемся определением (7.1) эрмитова оператора, записав его в форме .

Подставляя сюда правые части уравнений (8.1) и учитывая свойство (7.2), получим

.

В силу вещественности и невырожденности собственных значений и , отсюда найдем

; , , (8.2)

что и требовалось доказать.

Объединяя равенства (8.4) и (8.2), запишем условие ортонормированности

(8.3)

собственных функций эрмитова оператора с невырожденным дискретным спектром.

 

Задача 9. Используя свойство ортонормированности (8.2), найти коэффициенты разложения произвольной функции по базису в гильбертовом пространстве.

Решение. В качестве базиса выберем собственные функции оператора , полученные решением уравнения (7.3) и удовлетворяющие условию (8.3). Искомое разложение представим в форме

,

где суммирование проводится по всем значениям индекса (т.е по всем собственным значениям оператора ). Для нахождения коэффициентов запишем скалярное произведение

.

Преобразуем его с учетом свойств (7.2), , (8.3). Это дает

Таким образом, окончательно запишем

, .

Коэффициент имеет смысл проекции функции на орт гильбертова пространства.

 

Задача 10. Решить уравнение (7.3) для оператора

,

Решение. Из решения задачи 3б и равенств (10.1) найдем

,

т.е. рассматриваемый оператор Эрмитов, а его собственные значения вещественны. Уравнение (7.3) примет вид

.

Решая его, найдем

.

Из условия периодичности (см. задачу 3б)

вытекает равенство

,

из которого получаем ограничение

;

Из дискретности и невырожденности спектра следует, что после нормировки (8.4) функции будут обладать свойством (8.3).

Запишем условие нормировки (8.4) в виде

В общем случае постоянный множитель есть комплексное число. однако ввиду всегда допустимого введения произвольного фазового множителя

, (10.1)

будем предполагать вещественность константы . Это дает

Окончательно запишем

;

 

Задача 11. Решить уравнение (7.3) для оператора

, .

Решение. Из (10.1) и решения задачи 3а следует, что рассматриваемый оператор Эрмитов. Следовательно, его собственные значения вещественны. Уравнение (7.3) примет вид

,

Решая его, найдем

. (11.1)

Норма функции неограниченна, поскольку

.

Следовательно, при соответствующем выборе константы функции и вида (11.1) будут удовлетворять условию (11.2).

Для расчета воспользуемся равенством . Собственный дифференциал для функции (11.1) имеет вид

.

Подставляя в определение нормы (11.3), приходим к интегралу

который после замены переменных

приводя к виду

Используя табличный интеграл

из условия нормировки получим

Как и в задаче 10, константу нормировки выберем вещественной. Таким образом, окончательно запишем

. (11.4)

 

Задача 12. Для стационарного состояния вида

(12.1)

описывающего в одномерном случае частицу в бесконечно глубокой потенциальной яме ширины , рассчитать средние значения величин, соответствующих операторам:

а)

б)

Решение. а) По определению (12.2), запишем

(12.3)

Расчет числителя (12.3) дает

где использованы соотношения

Аналогичным образом для знаменателя (12.3) получим

Следовательно, для будем иметь

б) Учитывая свойство (7.2) и определение (12.2), запишем

. (12.4)

Расчет числителя (12.4) дает

таким образом, для будем иметь

 

Задача 13. В - представлении решить уравнение (13.1) для оператора .

Решение. В одном случае имеем

(13.2)

где - некоторое собственное значение оператора . Учитывая определения

(13.6)

отсюда найдем

(13.3)

Равенство (13.3) возможно лишь при условии, что равна нулю всюду, кроме точки . Среди решений уравнения (13.2) или (13.3) не существует ни одной квадратично-интегрируемой функции. Единственной функцией, удовлетворяющей (13.2) и нормировке (11.2), является дельта-функция, определенная равенствами

, (13.4)

. (13.5)

Таким образом, функция имеет вид

.

В трехмерном случае вместо (13.2) запишем

. (13.7).

В силу (13.6) оператор представим в виде суммы трех коммутативных операторов: . Это обстоятельство позволяет для решения уравнения (13.7) использовать метод разделения переменны. Это дает

(13.8)

Решая (13.8) и учитывая равенство

(13.9)

вытекающее из определения дельта-функции в - мерном пространстве векторов :

, (13.10)

для найдем

.

 

Задача 14. В - представлении найти собственную функцию оператора импульса.

Решение. Записывая (14.1) в декартовых координатах

(14.2)

и учитывая, что представим в форме суммы трех коммутативных операторов (так же, как и ),

(14.3)

воспользуемся решением сходной одномерной задачи II. Уравнение (13.1) в обозначениях (14.3) принимает вид

(14.4)

Уравнения (14.4) сводятся к трем одномерным уравнениям

подобным исследованному в задаче II. Из (11.4) имеем

(14.5)

Вещественная, как и в (11.4), константа находится из условия нормировки (11.2)

(14.6)

Подставляя (14.5) в (14.6)

и проводя под интегралом замену переменных , найдем

что с учетом (13.5) дает

Подставляя найденную константу в (14.5) получим

что вместе с (14.4) дает

(14.7)

Условие ортонормированности (11.2) для собственной функции (14.7) оператора импульса с учетом (13.9) и (14.6) имеет вид

(14.8)

Здесь индексами 1 и 2 нумеруются различные значения и вектора , тогда как в (14.4) эти же индексы используются для обозначения проекций и вектора на соответствующие оси декартовых координат.

 

Задача 15. В - представлении получить явный вид оператора , используя координаты а) декартовы; б) сферические.

Решение. а) В декартовых координатах (14.3) и (14.2) имеем

(15.1)

б) Переход от декартовых координат к сферическим определяется формулами:

(15.2)

(15.3)

Для операторов и переход (15.2) к сферическим координатам дает

Подставляя эти выражения в (15.1), запишем

(15.4)

С учетом (15.3) произведенные сферических координат и выражения в круглых скобках (15.4) приводятся к виду

(15.5)

Подставляя вторую строку (15.5) в (15.4), для оператора в сферических координатах получаем

(15.6)

 

Задача 16. В сферических координатах - представления найти собственную функцию оператора .

Решение. Оператор (15.6)связан с оператором задачи 10 равенством

Используя решение задачи 10, для собственных функций , удовлетворяющих уравнению

(16.1)

(где - собственное значение оператора , соответствующее ), получаем

(16.2)

 

Задача 17. В - представлении (одномерная система) решить уравнение (7.3) для оператора в случае частицы в бесконечно глубокой потенциальной яме, ширины .

Решение. В случае бесконечно глубокой ямы по определению имеем

(17.1)

Интересующее нас решение ищем на отрезке (17.2)

Поскольку в точках и потенциальная энергия частицы обращается в бесконечность, вероятность преодоления бесконечного барьера и попадания за пределы области (17.2) равна нулю. Оказавшись в области (17.2), частица все время будет находиться в ней. Из формул (17.3) и

(17.4) следуют соотношения

где - волновая функция , удовлетворяющая стационарному уравнению Шредингера

(17.5)

совпадающему с уравнением (13.1) или (13.2) (в зависимости от характера спектра), т.е. функция , удовлетворяющая (17.5), есть собственная функция оператора , соответствующая собственному значению . Из сказанного вытекают граничные условия , накладываемые на решение уравнения (17.5).

Таким образом, приходим к задаче

(17.6)

Отсюда следует:

(17.7)

Положительность собственного значения оператора вытекает из положительности и . Решение уравнения (17.7) представимо в виде суперпозиции двух элементарных состояний, которые на языке (17.3) интерпретируются как волны де Броля, распространяющиеся в противоположных направлениях оси :

(17.8)

Подстановка (17.8) в граничные условия (17.6) приводит к системе однородных уравнений

(17.9)

для неизвестных коэффициентов . Критерий существования етривиального решения этой системы

дает условие квантования

собственного значения (17.5). Это означает, что обладает дискретным спектром, а уравнение (17.5) эквивалентно (7.3). Вводя согласно (17.9) обозначения

где - пока неизвестная вещественная (в силу наличия у произвольного фазового множителя (10.1) это всегда возможно) константа, для функции (17.8) будем иметь

(17.10)

Поскольку собственные функции оператора с дискретным спектром квадратично интегрируемы, условие нормировки имеет вид

Отсюда с учетом решения задачи 12 находим

Подставляя найденное значение константы в (17.10), запишем решение задачи в окончательной форме

(17.11)

 

Задача 18. Используя формулы (17.4) и решения задач 13 и 14, найти плотности вероятностей и для стационарного состояния (см. задачу 17).

Решение. а) Согласно (17.3) амплитуда разложения состояния по базису равна

В силу нормировки на единицу из (17.4) и (17.11) найдем

(18.1)

б) Аналогично (18.2) для амплитуды разложения по базису запишем

Подставляя сюда из (17.11), вводя обозначения

и проводя интегрирование, получим

.

Учитывая равенства

для в (17.4) будем иметь

Подставляя в (17.4), запишем

(18.3)

Условие нормировки в (18.3) вытекает из равенства Парсеваля в форме

справедливой в случае непрерывного спектра собственных значений оператора .

 

Задача 19. Рассчитать коммутатор .

Решение. Для нахождения явного вида оператора необходимо рассмотреть результат его действия на произвольную функцию . Используя (13.6), (14.2) и определение (19.1), запишем

. (19.2)

 

Задача 20. Найти коммутатор .

Решение. Используя (19.2) и вид в - представлении (20.1), запишем

. (20.2)

 

Задача 21. Показать, что .

Решение. Воспользуемся соотношением

, (21.1)

легко проверяемым непосредственной подстановкой всех коммутаторов в (21.1) согласно определению (19.1).

Тогда для искомого коммутатора запишем

. (21.2)

Ввиду симметричности (относительно перестановки индексов) оператора и антисимметричности (согласно определению (20.1)) тензора двойное суммирование в (21.2) по индексам и дает нуль. Равенство

(21.3)

объясняется также и тем, что скалярный оператор инвариантен относительно преобразования

. (21.4)

Задача 22. Используя неравенство Коши-Шварца-Буняковского получить нижнюю границу для дисперсии наблюдаемой .

Решение. Выбирая в качестве и функции

и используя неравенство

, (22.1)

получим

. (22.2)

В силу эрмитовости оператор так же эрмитов (7.1), т.е. выполняется равенство

. (22.3)

Согласно определению (13.5) неравенство (22.2) принимает вид

.

Отсюда с учетом

(22.4)

(22.5)

получим

.

Таким образом, мы нашли, что наименьшее из возможных значений дисперсии (и среднеквадратичного отклонения ) физической величины равно нулю.

 

Задача 23. Доказать, что обращается в нуль, если соотношение, по которому проводится усреднение, описывается собственной функцией оператора .

Решение. Пусть в качестве в (13.5) выбрана , удовлетворяющая (7.3). Тогда в силу

, (23.1)

(23.2)

и (13.5) запишем

.

С учетом определения (22.5) и равенства (22.3) это дает

.

Верно и обратное: равенство нулю нормы некоторой функции

реализуется лишь в случае равенства нулю этой функции:

. (23.3)

Сравнивая равенство (23.3) с уравнением (7.3), заключаем, что оно возможно, если - одна из собственных функций оператора

,

где - собственное значение оператора , соответствующее этой собственной функции.

 

Задача 24. Для стационарного состояния (17.11) рассчитать и (см. задачу 12).

Решение. Согласно определению (24.1) запишем

. (24.2)

Для получения и (с учетом (24.3) и (24.4) нам остается рассчитать и . По определению (13.5) для имеем

. (24.5)

а) В случае число находится вычислениями

,

подобными проделанным в задаче 12а. Следовательно,

. (24.6)

Подставляя (24.6) и (24.3) в (24.2), получим

. (24.7)

б) Для оператора (см. задачу 12б) найдем

.(27.8)

Подстановка (24.8) и (24.4) в (24.2) дает

. (24.9)

 

Решения дополнительных задач по курсу "Квантовая теория".

1. Доказать соотношение:

 

Решение.

Введём оператор и разложим его в ряд Тейлора в точке :

 

 

При этом

 

 

Аналогично находим производные более высокого порядка:

 

и т.д.

 

Тогда

 

2. В состоянии частицы с волновой функцией , где , , a-вещественные параметры, найти распределение вероятностей различных значений координаты. Определить средние значения координаты

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...