Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Отчет по лабораторной работе № 11

Кафедра Общей Физики

 

«определение отношения теплоёмкости при постоянном давлении к теплоёмкости при постоянном объёме ДЛЯ воздуха методом стоячей волны»

Выполнил: студенты гр. МГП-18__________________              / Саликов А.А. /

                                                 (подпись)                                  (Ф.И.О.)

 

Проверил: доцент_____________________                         /Гужва М.Е./

                              (подпись)                                          (Ф.И.О.)

 

Санкт-Петербург

2018

Цель работы - определить g = C p/ CV методом стоячей звуковой волны.

 

Общие сведения

t =0
 
 
  p, r
  u D t
u D t
Рис.1  
  p 0, r 0
T
Рассмотрим, как распространяется звуковая волна в закрытой цилиндрической трубе, заполненной воздухом. В момент времени t = 0 мембрана телефона T (рис.1) начинает двигаться вправо с постоянной скоростью . Молекулы воздуха вблизи мембраны придут в движение и тоже будут перемещаться вправо со скоростью . Непосредственно около мембраны возникнет область сжатия, давление внутри которой р = р 0 + D р, где р 0 - первоначальное давление воздуха. Сжатый слой воздуха передаст импульс молекулам, расположенным справа, приводя таким образом в движение соседний слой. В течение второй части периода мембрана движется влево, создавая справа от себя область разрежения, в которую устремляются молекулы из сжатого слоя. Таким образом, молекулы воздуха совершают колебательное движение в направлении колебаний мембраны. В среде при этом распространяются, чередуясь, области сжатия и разрежения воздуха (области повышенного и пониженного давления), что и представляет собой бегущую звуковую волну. Звук является продольной волной, т.к. частицы среды совершают колебания вдоль направления распространения. Будем описывать распространение волны с помощью фазовой скорости - скорости распространения в пространстве поверхностей, образованных частицами, совершающими колебания в одинаковой фазе.

Импульс силы , с которой мембрана в течение времени D t давит на газ

                              ,                       (1)

где S - площадь мембраны, D p – избыточное давление, обусловленное силой .

С другой стороны, импульс внешней силы равен приращению импульса (количества движения), которое получил газ:

,            (2)

где  - плотность сжатого воздуха;  - плотность воздуха в начальный момент времени;  - масса сжатого воздуха;  - длина столба воздуха (путь, который прошла волна за время ). Объединяя равенства (1) и (2), получим

.       (3)

До движения мембраны масса воздуха m в отрезке трубы длиной  составляла r 0 . При смещении мембраны на u D t плотность воздуха меняется, и в этом случае его массу можно представить (рис. 1)

,

или

,

После простых алгебраических преобразований получим

.                     (4)

Подставив равенство (3) в формулу (4), можно записать

.      (5)

Если изменения плотности и давления малы (Dr << r0 и D p << p 0), то скорость распространения волны

.             (6)

С точки зрения термодинамики процесс распространения звуковой волны в газе можно рассматривать как адиабатический, так как изменение давления происходит так быстро, что смежные области среды не успевают обмениваться теплом.

Адиабатический процесс описывается уравнением pV g = const. Так как V = M/ r (здесь М - масса газа), то p (M/ r) g = const. Продифференцировав это равенство с учётом изменения давления и плотности, получим

,

откуда

,

т.е. в соответствии с формулой (6)

,          (7)

где r - плотность газа при данном давлении и температуре, r = p m / RT; m - молярная масса газа; R - универсальная газовая постоянная; T - абсолютная температура.

Подставив r в уравнение (7), получим

,

откуда

.               (8)

Таким образом, для вычисления g необходимо определить скорость распространения звуковых колебаний. В работе эта скорость определяется методом стоячей волны.

Если в трубе, один конец которой закрыт, возбудить звуковые колебания, в ней в результате наложения двух встречных волн (прямой и отражённой) с одинаковыми частотами и амплитудами будут возникать стоячие волны. В определенных точках амплитуда стоячей волны равна сумме амплитуд обоих колебаний и имеет максимальное значение; такие точки называются пучностями. В других точках результирующая амплитуда равна нулю, такие точки называются узлами. Расстояние между ближайшим узлом и пучностью равно l/4, где l - длина бегущей звуковой волны. Таким образом, измерив расстояние между узлом и пучностью или между двумя ближайшими пучностями (l/2), можно найти длину бегущей звуковой волны l. Фазовая скорость волны рассчитывается через длину волны по соотношению

u = ln,      (9)

где n - частота колебаний.

 

Порядок выполнения работы

 

Описание экспериментальной установки.

Рис.2  
ЗГ
Т
М
 
мк V
ЗГ
узлы
пучности
lст
 
Ч
           В экспериментальную установку (рис.2) входят: стеклянная труба, в которой создаётся стоячая волна, звуковой генератор (ЗГ), микровольтметр, частотомер (Ч). В стеклянную трубу вмонтированы неподвижный микрофон (М) и телефон (Т), который может свободно перемещаться вдоль оси трубы.

       Звуковой генератор вырабатывает синусоидальное напряжение звуковой частоты, которое подается на телефон. Переменный ток приводит в колебательное движение мембрану телефона, являющуюся излучателем звуковой волны. Отражённая от противоположной стенки трубы волна движется навстречу излучаемой и происходит их наложение. В результате в трубе возникает стоячая звуковая волна. В микрофоне происходит преобразование механической энергии волны в энергию электрического тока, величина которого измеряется микровольтметром. Частота звуковой волны устанавливается лимбом на генераторе, точное значение частоты измеряется частотомером. При перемещении телефона вдоль трубы ток в цепи микрофона будет меняться от минимального, когда микрофон попадает в узел, до максимального, когда он попадает в пучность. Таким образом, следя за показаниями микровольтметра, можно найти положения нескольких пучностей стоячей волны и вычислить ее длину.

Таблица №1 результатов измерений ( -расстояние при котором показания микровольтметра максимально), вычисляемых величин ( -растояния между пучностями  ; -среднее расстояние между пучностями; -длина волны и скорость, g-коэффициент C p/ CV   ):

Таблица №2 Результаты вычислений погрешностей ( ∆d l- погрешность средней длины волны, ∆g - погрешность коэффициента C p/ CV, ∆g - погрешность среднего значения коэффициента g, ∆l - погрешность длины волны, ∆ u - погрешность скорости волны) и среднее значение коэффициента g)

Расчет измерений

                     

                    

                      

                       

                

                     

Погрешность

    

       

 

Вывод: В данной лабораторной работе был экспериментально определён коэффициент g = C p/ CV методом стоячей звуковой волны.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...