Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Гравитационные подводные процессы




К гравитационным процессам относят такие, в возникновении и развитии которых основная роль принадлежит силе тяже­сти. Это в известной степени аналоги склоновых гравитационных процессов, происходящих на суше. Для проявления склоновых про­цессов на батиальных и абиссальных глубинах на морском дне условия особенно благоприятны, так как донные отложения вслед­ствие высокого насыщения их водой обладают повышенной пла­стичностью. По мнению В. В. Лонгинова, именно гравитационные перемещения выполняют в океане основную работу по перемеще­нию осадков.

Пока имеются лишь отрывочные сведения о крипе — процессе медленного сползания или оплывания толщ осадков на относитель­но пологих склонах. Одним из проявлений крипа являются песча­ные потоки и на резких перепадах профиля склона даже «пескопа-ды», описанные при проведении подводных наблюдений в каньонах. Более широко известны подводные оползни, которые были впервые обнаружены А. Д. Архангельским и Н. М. Страховым еще в 30-х годах при изучении осадков в Черном море. Уже при уклонах по­рядка 3—5° может возникнуть сползание осадков. Для того чтобы спровоцировать подводное оползание, достаточно небольшого сей­смического толчка или даже серии ритмических колебаний давле­ния столба воды в верхней части материкового склона или на бров­ке шельфа, возникающих при прохождении гребней и ложбин волн при крупных штормах. На более крутых склонах оползни могут возникать самопроизвольно при условии, что масса накапливаю­щейся на наклонной поверхности толщи осадков превысит предел их прочности.

Подводные оползни могут быть «структурными»: сползают це­лые блоки пород без существенных нарушений структуры внутри блока. Крупнейшим примером структурного подводного оползня является выступ Блейк-Спур на восточной окраине подводного плато Блейк (атлантическая окраина материка Северной Америки), заметный даже на мелкомасштабных обзорных картах (см. рис. 23). По-видимому, более обычны пластичные подводные оползни: пе­ремещение блока пород, постепенно переходящее в пластическое течение грунта с внутренним взаимодействием частиц, подобное лавинам или грязекаменным потокам на суше. В результате мас­сового развития подводных оползней на,материковом склоне в его нижних частях и на материковом подножье формируется холмисто-


западинный рельеф, как это, например, наблюдается в Мексикан­ском заливе, в море Бофорта и в других районах. Надо заметить, что довольно часто встречаются ископаемые подводные оползни, вскрываемые в геологических разрезах. Наиболее известным при­мером этого рода является развитие мощных оползневых блоков фораминиферовых слоев па­леогена в толще майкопских отложений, характерное для поднятия Кукурттау в Вос­точном Дагестане.

Другой тип гравитацион­ных процессов — мутьевые потоки — гравитационное те­чение водной суспензии твер­дых частиц. Вследствие того, что суспензия содержит взвешенные минеральные частицы, она имеет большую плотность, чем просто мор­ская вода. В результате су­спензия погружается на на­клонное дно и скатывается по нему, развивая большую скорость течения, обеспечи­вающую не только перенос взвешенного минерального материала, но и в ряде слу­чаев и эрозию дна.

Мутьевые потоки получа­ют питание прежде всего на приустьевых участках шельфа во время речных па­водков, когда резко возра­стает взвешенный сток рек, в результате перехвата пото­ков наносов в береговой зо­не моря и разжижения дви­жущейся вниз по склону оползневой массы. Подвод­ные оползни, следователь­но, способны переходить в мутьевые потоки. Именно так образовался мощный мутьевой поток в результате небольшого землетрясения на южном склоне Большой Ньюфаундлендской банки (рис. 115). Возник опол­зень, который вскоре еще


в верхней части материкового склона превратился В широкий и мощный мутьевой поток. Этим потоком было разорвано и дефор­мировано более 10 подводных телеграфных кабелей, проложенных на его пути. Отдельные куски кабеля были перемещены на десятки километров вниз по пути следования потока. По усилиям, необхо­димым для разрыва кабелей и перемещения их обрывков на боль­шие расстояния, были рассчитаны скорости потока, которые, как оказалось, достигали 120 км/ч.

Ширина потока дости-* гала 330 км при общей протяженности около 920 км. Однако в боль­шинстве случаев мутьевые потоки локализуются в подводных каньонах, по­этому ширина их гораздо меньше, но длина может достигать 1850 и более ки­лометров. Используя под­водные каньоны как трас­сы, мутьевые потоки ак­тивно перестраивают их борта и тальвеги. Достиг­нув значительных скоро­стей еще до скатывания в подводный каньон, мутье­вой поток эродирует по­верхность шельфа и бла­годаря регрессивной эро­зии способствует продви­жению вершины каньона в сторону берега. Неред­ко в вершине каньона об­разуется несколько эро­зионных врезов, напоми­нающих водосборные во­ронки верховий горных рек.

В самом каньоне мутьевые потоки также эродируют дно и борта каньона, но ближе к его середине начинает прева­лировать аккумулятивная деятельность. Формируют­ся террасы и прирусловые валы. В устье каньона происходит массовое вы­падение материала из су-


 


спензии и образование обширного конуса выноса. Осадки, перено­симые мутьевыми потоками и слагающие такие конусы выноса,, получили название турбидитов.

Формируемые мутьевыми потоками конусы выноса в отдельных случаях представляют собой грандиозные по размерам и мощно­сти осадков образования. Величина их находится в прямой зависи­мости от величины твердого стока реки, которая питает своими вы­носами мутьевые потоки.

Самым крупным подвод- К-:'\й0 ч&/е—• -2у--------- ?----- rs"\1

ным образованием такого k^IS s. ../У %^<s\ х / J '„ F рода является конус вы­носа каньона Ганга (рис. 116), который занимает весь Бенгальский залив и, не умещаясь в нем, выдвигается своим внеш­ним краем далеко в пре­делы Центральной котло­вины ложа Индийского океана. Следует заметить, что твердый сток Ганга — Брахмапутры равен поч­ти 2180 млн. т, что со­ставляет 12% твердого стока всех рек мира.

Если материковый склон густо изборожден подводными каньонами, конусы выноса смежных каньонов сливаются друг с другом и в целом обра­зуют волнистую наклон­ную равнину материково­го подножья. Таким обра­зом, мутьевые потоки представляют собой важ­нейший механизм форми­рования рельефа матери­кового подножья. Мощность неконсолидированных осадков, слага­ющих конусы, может достигать 5 км.

Мутьевые потоки, после того как большая часть переносимых ими минеральных частиц отложится в каньонах и в конусах выно­са, еще сохраняют характер суспензии, хотя и гораздо менее на­сыщенной, чем ранее. Такие мутьевые потоки малой плотности эродируют поверхность конуса и устремляются дальше, в пределы ложа океана, где они служат одним из основных источников образования плоских абиссальных равнин, примыкающих к мате­риковому подножью, образованному конусами выноса подводных каньонов. Наиболее значительные, далеко проникающие в преде-


лы абиссальных равнин мутьевые потоки эродируют их по­верхность, образуют крупнейшие долинообразные врезанные фор­мы рельефа, которые целесообразно именовать абиссальными до­линами (рис. 117).Такие же абиссальные долины, глубина вреза которых от 50 до нескольких сот метров, образуются и на крупных конусах выноса (рис. 116). Примером может служить Срединно-- Атлантический каньон в 'северо-западной части Атлантики. Абис­сальные долины бывают нередко обвалованы прирусловыми вала­ми высотой до нескольких десятков метров. Густая сеть абиссаль­ных долин (см. рис. 117) развита в северо-восточной части Тихого океана.

О ГЕОМОРФОЛОГИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ

ДОННЫХ И ПОСТОЯННЫХ ПОВЕРХНОСТНЫХ ТЕЧЕНИЙ

Исследования по глубоководной гидрологии и, в частности, по выяснению условий формирования и динамики донных водных масс в океанах показали, что на абиссальных глубинах на дне ■океана движутся мощные потоки плотных холодных вод, из кото­рых, собственно, и формируются донные водные массы. Главным местом зарождения этих вод является шельф Антарктиды. Выхо­ложенные воды антарктического шельфа из-за повышенной плот­ности опускаются на дно и медленно растекаются по ложу океана, причем срединно-океанические хребты не являются для них1 пре­пятствием, так как эти течения проникают по другую сторону хреб­тов по поперечным депрессиям, обусловленным разломами;

В северо-западной части Атлантического океана основная роль в формировании донных водных масс принадлежит арктическим водам. Стекая по дну к югу, они образуют так называемое Запад­ное Пограничное донное течение, скорость которого на глубинах 3500—4500 м, по данным американских исследователей, местами достигает 35 см/с.

Западное Пограничное течение, как можно судить по данным подводного фотографирования, сейсмо-акустических профилей и глубоководного бурения является причиной образования гигантских донных аккумулятивных форм, соизмеримых по своим масштабам с крупными поднятиями дна эндогенного генезиса. К числу таких форм относятся, например, «хребты» Ньюфаундлендский и Багама-Блейк, которые, по данным сейсмопрофилирования и бурения, от­нюдь не являются хребтами, а представляют собой аккумулятив­ные образования, время формирования которых охватывает весь кайнозой и, возможно, также часть верхнего мела. Закономерности формирования этих аккумулятивных образований, по-видигмому, сходны с теми, которые присущи образованию береговых аккуму­лятивных форм, возникающих при продольном перемещении нано­сов, однако масштабы этих явлений несоизмеримы.

В восточной экваториальной части Тихого океана была обнару­жена другая гигантская аккумулятивная форма, которая образо*


вана деятельностью поверхностного Экваториального течения. Зо«на этого течения выделяется очень высокой биологической, продук* тивностью.,

Разнос течением остатков отмирающего планктона. привел в конечном -счете к образованию огромной по протяженности (бо­лее 2 тыс. км), ширине (до 400 км) и высоте (до 1,5 км) аккуму­лятивной формы (рис. 118).

Рис. 118. Восточнотихоокеанский вал — гигантская аккумулятивная форма, построенная экваториальными течением. Жирные линии — изо-пахиты через 0,1 км

В обоих приведенных примерах одним из важнейших условий формирования аккумулятивных форм были длительность сохране­ния обстановки осадкообразования и самого процесса образования этих форм.

Изучение форм рельефа, создаваемых течениями в абиссальных глубинах океана, только начинается. Генетические формы и типы рельефа, создаваемые течениями, в том числе и глубоководными донными течениями, даже не имеют специального названия, а меж­ду тем, судя по огромной площади распространения их действия (практически весь океан), это едва ли не самые распространенные геоморфологические образования на Земле. Мы предлагаем назы­вать их торрентогенными формами и типами рельефа (от torrent — поток, течение).

О БИОГЕННЫХ ФАКТОРАХ РЕЛЬЕФООБРАЗОВАНИЯ

Наиболее эффектный биогенный фактор рельефообразования в Мировом океане — деятельность рифостроителей — кратко рас­сматривалась в предыдущей главе. Следует отметить, что биоген­ные факторы геологической жизни океана весьма разнообразны.




В ходе жизнедеятельности и в результате отмирания различных морских организмов происходит: а) накопление рыхлого осадочное го материала — скелетов и покровных частей различных организ­мов, обычно кремнистого или известкового состава; б) формирова­ние массивных пород типа рифовых известняков и образуемых ими форм рельефа — коралловых рифов; в) разрушение и разрыхление горных пород вследствие деятельности различных «камнеточцев»—■ некоторых двустворчатых (Folas, Barnea, Lytophagus и др.); г) переработка донных грунтов илоедами (червем Sipunculus и др.) путем пропускания их через пищеварительный тракт, в результате чего донные отложения утрачивают слоистость и приобретают мел­кокомковатую, так называемую копролитовую структуру. Многие организмы улавливают взвеси и способствуют их осаждению. Так, например, мидии пропускают через свой организм в среднем 1,5 л воды в час, начисто отфильтровывая все взвеси, содержащиеся в воде, и осаждая их.

Многие жители моря обладают избирательной способностью концентрировать в своих покровах и мягких тканях различные эле­менты и неорганические соединения, обычно содержащиеся в мор­ской воде. Так, моллюск Archidoris может накапливать в своих тканях медь в количестве, превышающем ее нормальную концен­трацию в морской воде (0,01 мг/л) в 4300 раз, а асцидии — концентрировать ванадий в количестве до 1% от их массы. Мол­люск Lingula поглощает фтор, и этот элемент может составлять до 1,5% от массы его раковины. Особенно большое значение имеет способность многих организмов усваивать известь или кремнезем из морской воды. Эти элементы практически безвозвратно выбыва­ют из кругооборота. Извлечение извести из морской воды и ее осаждение в донных осадках — один из важнейших геохимических процессов, протекающих в поверхностных оболочках Земли, начи­ная с архея, с постепенно нарастающей интенсивностью (Страхов, 1963).

Процесс биогенного осаждения кремнезема имеет меньшие масштабы, но, как показывают результаты глубоководного буре­ния, накопление кремнезема в донных осадках также весьма ха­рактерно по крайней мере для всего мезо-кайнозойского этапа истории океана. Скелетные и покровные остатки организмов, усваи­вающих известь и кремнезем, после их смерти выпадают на дно и накапливаются здесь, образуя различные типы донных морских отложений.

Наиболее важное значение среди известковых организмов для этого процесса имеют одноклеточные простейшие — фораминиферы, а также одноклеточные зеленые водоросли кокколитофориды. Из кремнистых организмов наибольшая роль принадлежит однокле­точным диатомовым водорослям, за ними следуют радиолярии и кремнежгутиковые. Общее поступление биогенного осадочного материала на дно океана оценивается величиной 1,82 млрд..т в год.


АККУМУЛЯЦИЯ ОСАДОЧНОГО МАТЕРИАЛА

КАК ВАЖНЕЙШИЙ ГЕОМОРФОЛОГИЧЕСКИЙ ПРОЦЕСС

НА ДНЕ МИРОВОГО ОКЕАНА

Океан — это прежде всего область аккумуляции огромных масс поступающего в него осадочного материала, хотя, как отмечалось выше, на его дне наблюдаются и денудационные процессы. По под­счетам А. П. Лисицына, реки выносят ежегодно в море в среднем 18,35 млрд. т твердых (взвешенных и влекомых) частиц и около 3,2 млрд. т растворенного материала. Ледники вместе с айсбергами поставляют в океан около 1,5 млрд. т, эоловые процессы-—около 1,6, абразия — около 0,5 млрд. т осадочного материала. Весь мате­риал, образующийся в результате разрушения горных пород глав­ным образом суши, называется терригенным. Количество ежегодно поступающего биогенного материала оценивается, как уже упоми­налось, в 1,82 млрд. т. Кроме того, значителен объем поступающих в океан пирокластических продуктов вулканических извержений, вероятно, достигающий 3 млрд. т. Некоторая часть осадочного ма­териала формируется в океане за счет химических превращений поступающих сюда терригенных и вулканогенных частиц.

Таким образом, в океан ежегодно поступает более 30 млрд. т осадочного материала. Осаждение его на дно происходит посте­пенно, подавляющая часть осадочного материала долго еще пребы­вает во взвешенном состоянии. По определениям А. П. Лисицына, общее количество взвешенного материала в океане составляет 1370,32 млрд. т, следовательно, среднее пребывание осадочных частиц во взвеси составляет около 45 лет.

В зависимости от генезиса преобладающего осадочного мате­риала донные отложения делятся на терригенные, биогенные, хе-могенные и полигенные. Последняя группа включает один тип глу­боководных отложений — так называемую глубоководную красную глину, которая формируется в результате примерно равнозначного участия нескольких источников поступления материала. Скорость накопления донных отложений различна, наибольшая характерна для терригенных отложений (до нескольких миллиметров в год) и наименьшая — для красной глины (порядка 0,3—0,8 мм за тысячу лет). Соответственно и эффект аккумуляции, ее влияния на облик рельефа дна различен. Кроме того, эффект осадкообразования за­висит от того, где образуются осадки: на шельфе, материковом склоне, материковом подножье, в глубоководных желобах, котло­винах окраинных морей и океанических котловинах или на океани­ческих возвышенностях (рис. 119).

Высокая подвижность придонных вод в пределах шельфа пре­пятствует накоплению здесь мощной толщи осадков, хотя именно шельф является той зоной, куда поступает в первую очередь оса­дочный материал с суши. Вследствие высокой подвижности при­донных вод основная или значительная масса осадочного материала «проскакивает» зону шельфа. Аккумуляция на шельфе ограничена,


главным образом, впадинами и котловинами рельефа дна. Но та же высокая подвижность придонных вод обеспечивает подводную эрозию выступов рельефа шельфа. Благодаря этому на шельфе происходит комплексное выравнивание донного рельефа: как пу­тем аккумуляции во впадинах, так и путем срезания выступов рельефа действием подводной эрозии или денудации.

На материковом склоне имеется ряд условий, препятствующих ©существлению интенсивной аккумуляции, и в первую очередь зна­чительные уклоны поверхности и вертикальная циркуляция водных

Рис. 119. Проявление выравнивающей деятельности осадкообразования в различных условиях:

а — на шельфе; б — на материковом склоне и подножье: в — в глубоководном жело­бе; г — в пределах ложа океана (образование плоских абиссальных равнин в левой и сохранение холмистого рельефа в правой части рисунка); д' —рисунок, иллюст­рирующий более быстрое аккумулятивное выравнивание на поверхности плато, чем на дне соседней котловины

масс, благоприятствующие выносу материала, а также взвешива­нию значительного количества осадочных частиц. Подводные ополз­ни и в особенности суспензионные потоки также в большой мере способствуют выносу осадочного материала, а не накоплению его в зоне материкового склона. Более или менее благоприятными участками для накопления осадков на материковом склоне явля­ются только окраинные плато и отдельные достаточно широкие сту­пени или площадки при ступенчатом строении склона.

Интенсивная аккумуляция на материковом склоне возможна лишь при очень обильном поступлении терригенных осадков и ма­лой ширине шельфа. Иногда шельф полностью перекрывается дель­той крупной реки. В этом случае передний край дельты находится в непосредственной близости к материковому склону. Тогда массо­вое сваливание выносимого рекой материала может привести к частичному или полному погребению коренного рельефа материко­вого склона под мощной толщей осадков. Такую картину можно наблюдать, например, в районе дельты реки Миссисипи. Известен и ряд других примеров аккумулятивного строения материкового склона.


В отличие от шельфа и материкового склона материковое под­ножье исключительно благоприятно для накопления мощной тол-щи осадков. Интенсивность вертикальной циркуляции вод в этой зоне гораздо ниже, чем на материковом склоне. Осадки, поступаю­щие с последнего, выносы суспензионных потоков, оползающие со склона массы пластичных осадков, встречают здесь либо зону очень пологих уклонов поверхности, либо даже зону с обратными уклона­ми, если структурная впадина материкового подножья еще не за­полнена. В любом случае, следовательно, материковое подножье представляет собой идеальную ловушку для осадочного материала. Здесь в максимальной степени идет его накопление, и как морфо­логический результат аккумулятивного выравнивания образуется наклонная пологоволнистая аккумулятивная равнина.

Сходные условия для накопления осадков, поступающих с суши и шельфа, характерны для котловин окраинных морей в геосинкли­нальных областях. Здесь также аккумулируются ■ мощные толщи осадков, обеспечивающие погребение коренного рельефа и форми­рование плоской или субгоризонтальной абиссальной равнины.

Ловушками для осадочного материала являются также глубо* ководные желоба, если они прилегают к достаточно зрелым остров­ным дугам типа Курильской или Японской. В первом случае глав­ным источником поступления материала являются вулканические выбросы. Во втором — к ним примешивается в более или менее зна­чительном количестве твердый сток рек. В результате на дне глубо­ководного желоба происходит аккумулятивное выравнивание рель­ефа. Поскольку борта глубоководного желоба находятся в неоди­наковых условиях поступления материала, образующаяся на дне желоба абиссальная плоская равнина слегка асимметрична, с не­большим уклоном в сторону океана.

В пределах ложа океана в общем случае наиболее благопри­ятными для аккумулятивного выравнивания являются те океани­ческие котловины или части котловин, которые ближе расположены к подводным окраинам материков и, следовательно, находятся в более благоприятных условиях для поступления осадочного мате­риала с подводных окраин материков. Медленное, но весьма дли­тельное накопление осадков приводит к формированию плоских абиссальных равнин, которые можно рассматривать как равнины предельного аккумулятивного выравнивания. Все неровности ко­ренного рельефа оказываются начисто погребенными под мощной толщей осадков (рис. 120).

На дне удаленных от подводной окраины материков котловин осадков отлагается гораздо меньше. Здесь образуется маломощный плащ отложений, который лишь облекает неровности коренного рельефа, но не нивелирует его. Это области распространения хол­мистого абиссального рельефа.

Нередко в пределах ложа океана можно наблюдать такие ре­зультаты процесса аккумулятивного выравнивания: на подводном плато, если глубина над ним не превышает 4—4,5 км, рельеф мо­жет быть существенно выровнен за счет аккумуляции донных от-


ложений, тогда как в котловинах, прилегающих к плато, с глуби­нами 5—6 тыс. м отмечается холмистый абиссальный рельеф. При­чины такого несоответствия заключаются в неодинаковой скоро­сти накопления осадков разных генетических типов. На плато, при упомянутой глубине над ним, может идти накопление органогенного


ЧАСТЬ IV. МЕТОДЫ ГЕОМОРФОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ И ГЕОМОРФОЛОГИЧЕСКОЕ КАРТОГРАФИРОВАНИЕ




ГЛАВА 21. СТРУКТУРА И МЕТОДЫ ПОЛЕВЫХ ГЕОМОРФОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ


Рис. 120. Профили плоской абиссальной (А) и холмистой абиссальной (Б) равнин по данным сейсмоакустического профилирования

'карбонатного ила, тогда как в котловинах с глубинами порядка "5 км и более возможно лишь накопление глубоководной красной "глины. Скорость накопления карбонатных илов в несколько раз

выше, чем красной глины, отсюда и такие различия в эффекте ак-"кумулятивного выравнивания.

Из сказанного следует, что донная аккумуляция, ведущая к "изменению рельефа дна за счет погребения коренных неровностей,

является важнейшим интегрирующим геолого-геоморфологическим -процессом на дне морей и океанов, обеспечивающим в конечном

счете выравнивание рельефа дна Мирового океана.


СТРУКТУРА ГЕОМОРФОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

Геоморфология, как одна из наук о Земле, основывается прежде всего на данных полевых исследований. Наряду с полевыми важ­ное значение для познания рельефа и истории его развития имеют также камеральные работы, включающие в себя весьма широкий и разнообразный круг вопросов и методов. Кроме того, можно го­ворить и об экспериментальных геоморфологических исследова-i ниях, которые ставят своей задачей изучение природных геоморфо­логических процессов на полевых стационарах или моделирование их в лаборатории.

Полевые геоморфологические исследования обычно завершают­ся составлением геоморфологической карты, которая наряду с текстом научного отчета является важнейшим итогом выполненных работ.

В зависимости от назначения можно различать общие и частные геоморфологические исследования. Общие исследования охватыва­ют все геоморфологические объекты и имеют целью комплексную характеристику (морфографии, морфометрии, генезиса, возраста, истории развития и динамики рельефа). Завершаются такие иссле­дования составлением общей геоморфологической карты. Обычно этот вид исследований имеет характер общей геоморфологической съемки, которая в нашей стране выполняется силами ведомств Министерства геологии СССР как часть государственной геологи­ческой съемки. Различают мелкомасштабную (<1: 1 000 000), сред-немасштабную (1:200 000—1:1000 000) и крупномасштабную (крупнее 1:200000) съемки.

Частные исследования проводятся с целью изучения отдельных геоморфологических объектов (например, карстового или овражно-эрозионного рельефа и т. п.) или отдельных геоморфологических показателей (например, глубины расчленения, густоты расчленения и т. д.). Результатом частных исследований являются частные гео­морфологические карты. Частные исследования, как отмечает



А. И. Спиридонов, обычно организуются для решения четко ограни­ченного круга теоретических или прикладных задач.

В целом геоморфологические исследовательские работы разде­ляются на подготовительный, полевой и камеральный этапы. В те­чение подготовительного этапа производится изучение района по данным предшествующих исследований: изучаются литературные источники, научно-технические отчеты, специальные Картографиче­ские материалы (геологические, геоморфологические и другие спе­циальные карты), тщательно прорабатываются топографические карты, материалы аэрофотосъемки и космических снимков. Наибо­лее целесообразно итоги изучения района оформить в виде предва­рительной геоморфологической карты. На основе полученных дан­ных составляется программа полевых исследований, включающая схемы намечаемых маршрутов, производства горных работ (шур-фовка, бурение) и других специальных работ, например геодези­ческих.

Полевой этап является главной составной частью экспедицион­ных геоморфологических исследований. В течение этого этапа про­изводится сбор основной части фактического материала, проводит­ся 'Начальная его обработка, вырабатываются первые заключения:о геоморфологическом строении изучаемой территории, составля­ется полевая геоморфологическая карта изучаемого района. -. В зависимости от назначения исследований и масштаба состав­ляемой карты при полевых работах применяются либо ключевой метод в сочетании с маршрутными исследованиями, либо метод

площадной съемки.

При ключевом методе проводится детальное обследование от­дельных, наиболее типичных для той или иной территории Ключе­вых участков (небольших по площади), а затем результаты обсле­дования экстраполируются на остальную, подлежащую изучению территорию. При этом широко используются крупномасштабны® топографические карты, аэрофотоснимки и космические снимки. Ключевые участки служат как бы дешифровочными эталонами. В целях контроля над правильностью экстраполяции на площадях между ключевыми участками прокладывается разреженная сетка рабочих съемочных маршрутов.

Площадные исследования ведутся при крупномасштабном кар­тировании. В этом случае маршруты прокладываются более или менее равномерно, сеть маршрутов и точек наблюдений делается достаточно густой, и необходимость в ключевых участках отпадает. Естественно, что при площадных исследованиях затрачивается го­раздо больше усилий и времени, чем при маршрутных работах.

Следует заметить, что во всех случаях полевые работы начина­ются обзорными рекогносцировочными маршрутами, которые про­кладываются по данным предварительного изучения материалов с таким расчетом, чтобы они проходили через все главные геоморфо­логические комплексы, пересекали все наиболее характерные эле­менты и формы рельефа, а также опорные обнажения и горные вы­работки. Задача рекогносцировочных маршрутов, которые часто


выходят за границы картируемой территории, — получить непосред­ственное (визуальное) представление о всей территории, подлежа­щей изучению. Они позволяют уточнить и детализировать ранее на­меченную программу полевых работ.

После рекогносцировочных маршрутов отрабатывается осталь­ная сетка маршрутов. При необходимости в конце полевого перио­да проводится несколько заключительных маршрутов, цель кото­рых — увязка данных по отдельным участкам обследованной тер­ритории, вторичное посещение отдельных участков и объектов, которым по тем или иным причинам во время съемки не было уде­лено достаточно внимания, общая проверка полевой геоморфоло­гической карты.

Камеральный этап — это этап обработки всего собранного фак­тического материала, его всесторонней увязки и осмысливания. Во время этого этапа исследований проводятся также различные аналитические работы (пыльцевой, минералогический, петрографи­ческий, микро- и макрофаунистический, диатомовый, радиометри­ческие и другие виды анализов образцов, отобранных в поле), окончательное дешифрирование фотоматериалов, составляются окончательная геоморфологическая карта и текст научного отчета.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...