Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Деаэрационная установка ДСА-300

Для восполнения потерь сетевой воды в теплосети включена система подпитки, состоящая из деаэраторов типа ДСА-300, производительностью 300 т/ч, насосов подпитки №5 и №6, включенных параллельно, системы задвижек и трубопроводов, гидравлически связывающих систему теплоснабжения. Пар на деаэрацию поступает из теплофикационного отбора турбины 1,2 ата с температурой 104 0С. Химически очищенная вода подается с ХВО-3 с температурой 300С. Исходные данные:

 

Таблица 11- Технические характеристики насоса подпитки теплосети №5 типа 8к-12

Параметр Значение
Тип насоса 8к-12
Производительность, м3 220/340
Тип двигателя АОВ2-4
Напряжениеэл.двигателя, В 380
Число оборотов, об./мин. 1470
Мощность электродвигателя, кВт 40

 

Таблица 12- Технические характеристики насоса подпитки теплосети №6 типа 8к-12

Параметр Значение
 Тип насоса 8к-12
 Производительность, м3 220/340
 Тип двигателя АОВ2-82-4
 Напряжениеэл.двигателя, В 380
Число оборотов, об./мин. 1460
Мощность электродвигателя, кВт 40

 

Схема работы деаэратора. Термический струйный деаэратор на рисунке 1 является смешивающим подогревателем и выполняется в виде вертикальной цилиндрической колонки 1, установленной на резервуаре (баке) питательной воды 2. Вода, поданная насосом в верхнюю часть колонки 1, стекает через отверстия в тарелках 3, раздробляясь при этом на мелкие капли. Навстречу падающей воде движется греющий пар. Высоту колонки и путь воды рассчитывают так, чтобы на этом пути вся вода была подогрета до температуры насыщения (кипения). При кипении воды из нее выделяются растворенные в ней газы, которые с небольшим количеством пара (выпар) отводятся через штуцер 4 в верхней части колонки. Обычно выпар составляет 2 кг на 1 т деаэрирированной воды. Вода в атмосферных деаэраторах подогревается до 104 0С температура кипения при давлении 0,12МПа (1,2 кгс/см2). Вода с такой температурой поступает в питательный насос. Чтобы горячая вода при входе в питательный насос не вскипала, и насос мог надежно подавать в котел горячую воду высокой температуры, давление воды перед насосом должно быть больше того давления, при котором происходит образование пара при данной температуре В связи с этим деаэраторы устанавливаются на сравнительно большой высоте над питательными насосами – не ниже 14 м при температуре воды 160 0С и еще выше при более высокой температуре воды.

1- цилиндрическая колонка; 2- резервуар; 3- тарелки; 4- штуцер; 5- водоуказательное стекло; 6- устройство автоматического регулирования подачи пара; 7- предохранительный клапан; 8- устройство автоматического регулирования подачи воды.

Рисунок 1- Схема атмосферного смешивающего деаэратора

Емкость питательных баков основных деаэраторов составляет 5 – 20-минутный запас для работы станции при максимальной нагрузке.

Деаэраторы являются важнейшим элементом оборудования электростанции и снабжаются устройствами для автоматического регулирования подачи пара 6 и воды 8, водоуказательными стеклами 5, сниженными указателями уровня, устройствами сигнализации нижнего уровня воды в аккумуляторном баке, предохранительными клапанами 7, устанавливаемыми на баках, регуляторами перелива, монометрами для измерения давления в деаэраторной колонке и самопишущими кислородомерами, показывающими содержание кислорода в воде при выходе из деаэратора.

 

5.1.1 Исходные данные:

Таблица 13- Расход химически очищенной воды на подпитку по месяцам.

Месяц Расход, Gхов,тн/мес Расход, Gхов,тн/ч
Январь 111800 155,28
Февраль 114000 158,33
Март 130400 181,11
Апрель 94500 131,25
Май 64400 89,44
Июнь 36100 50,14
Июль 47320 65,72
Август 67710 94,04
Сентябрь 151200 210
Октябрь 136000 188,89
Ноябрь 86600 120,28
Декабрь 72200 100,28

По данным таблицы видно, что максимальный расход приходится на сентябрь и составляет 210 т/ч.


Таблица 14- Общие данные

Номинальное давление в деаэраторе р, ат 1,2
Номинальная производительность G, т/ч  300
Температура деаэрированной воды t2, 0С  104,2
Емкость аккумуляторных баков V, м3 75

Таблица 15-Характеристика потоков воды и пара:

 

Общая подпиточная вода:

Расход Gптс , т/ч 210
Температура tптс, 0С 104

Добавочная (химически обработанная) вода:

Продолжение таблицы 15

 

Расход Gхов, т/ч 210-Dп
Температура tхов, 0С 30

Основной греющий пар (источник пара- отбор турбины):

Давление пара pп, ат 1,2-1,4
Температура пара tп, 0С  104,2
Энтальпия насыщенного пара при давлении 1,2 ата, iн, ккал/кг 640,7

 

5.1.2 Тепловой расчет деаэратора

Тепловой баланс деаэрационной установки составляется для определения полного расхода пара, подводимого к деаэратору.

В зависимости от тепловой схемы энергоустановки в деаэратор вводится то или иное количество потоков воды и пара. Тепловые балансы должны рассматриваться для режимов работы деаэратора, указанных в технических заданиях на проектирование.

В случае избытка тепла в деаэраторе (отрицательный расход пара) техническое задание на проектирование деаэратора подлежит уточнению, в ходе которого должны быть дополнительно проанализированы и проверены условия работы деаэратора в тепловой схеме установки.

В общем виде уравнение теплового баланса деаэратора запишется как равенство потоков тепла, введенных в деаэратор и вышедших из него

 

Q1+Q2+Q3+Q4=Q5+Q6+Q7+Q8, (5.1)

 

где Q1 – тепло, внесенное с основным потоком греющего пара, ккал/ч;

Q2 – тепло, внесенное с некипящими потоками воды, ккал/ч;

Q3 - тепло, внесенное с кипящими потоками воды, ккал/ч;

Q4 - тепло, внесенное с прочими потоками воды, ккал/ч;

Q5 – тепло, отведенное с деаэрированной водой, ккал/ч;

Q6 – тепло выпара, ккал/ч;

Q7 – потеря тепла деаэратором в окружающую среду, ккал/ч;

Q8 – тепло пара, отбираемого из деаэратора, ккал/ч.

Уравнение теплового баланса деаэратора как смешивающего теплообменного аппарата имеет вид:

 

, (5.2)

 

где Dп- расход нагревающего пара, т/ч;

- энтальпия греющего пара, ккал/кг;

- энтальпия химически очищенной воды, ккал/кг;

= 30 ккал/кг- принимаем по термодинамическим таблицам;

η- коэффициент, учитывающий потери тепла в окружающую среду; принимаем в первом приближении η= 0,98;

Gптс- общий расход воды на подпитку, т/ч;

tптс- температура нагреваемой воды на выходе из деаэратора,0С;

tхов- температура нагреваемой воды на входе в деаэратор, 0С.

Определим расход греющего пара в первом приближении:

т/ч.

Расход химически очищенной воды на деаэратор:

Gхов =Gптс- Dп=210- 25,97=184,03 т/ч.

Тепло, подведенное с химически обработанной водой, Qхов,:

Qхов = Gхов хов =184,03 30=5,52 Гкал/ч.

Тепло, внесенное с холодными потоками воды Q2, Гкал/ч:

Q2= Qхол= 5,52 Гкал/ч.

Количество выпара Dвып принимаем из соотношения 1,5-2 кг на1 тонну деаэрированной воды по рекомендации руководящих указаний по проектированию термических деаэрационных установок.

При производительности колонки 300 т/ч количество выпара составит 0,600 кг/ч.

Тепло, отведенное с выпаром, Qвып , Гкал/ч:

 

Qвып= Dвып вып,(5.3)

 

где вып – энтальпия паровоздушной смеси выпара, может быть принята равной энтальпии насыщенного пара в деаэраторе, вып = iн.

Qвып= 0,600  640,7=0,384 Гкал/ч.

Тепло, отведенное с деаэрированной водой, Qд, Гкал/ч:

 

Qд = G д, (5.4)

 

где G- количество деаэрированной воды (производительность деаэратора), т/ч;

д- энтальпия деаэрированной воды, определяемая по термодинамическим таблицам, ккал/кг.

Qд = 300 104,4= 31,32 Гкал/ч.

Количесво тепла, потребное на нагрев воды в деаэраторе, ∆Q, Гкал/ч:

∆Q= Qд- Qхол= 31,32 - 5,52= 25,8 Гкал/ч.

Расход тепла на деаэратор ∑Q, Гкал/ч:

∑Q= ∆Q + Qвып = 25,8+0,384=26,184 Гкал/ч.

Уточненное значение расхода пара на деаэратор, Dп, т/ч:

,

 т/ч.

Деаэратор АВАКС

 

Деаэратор «АВАКС» - вавкуумно-атмостферный кавитационно струйный предназначен для удаления из воды растворенных в ней газов, применяется в системах водопользования теплоэнергетических установок и теплоснабжения.

В этих деаэраторах используется принцип вихревой центробежной интенсификации массообмена. Вода подается в деаэратор, приобретая сильное вращательное движение. При этом действие центробежных сил на периферии выше, чем в середине вихря, из-за чего в центре образуется область пониженного давления, куда Архимедова сила выталкивает из жидкости пузырьки выделяющегося газа. Чем глубже вакуум, тем ниже температура кипения. Обычно вакуумные деаэраторы работают при температуре 60-800 С, оптимальной с точки зрения затрат на поддержания вакуума и температурного режима.

Вакуумно-атмосферные деаэраторы типа АВАКС имеют следующие основные особенности:

1) Деаэрация производится без подвода греющего пара.

2) АВАКС производит деаэрацию воды при t = (60 – 95) ºС.

3) Давление деаэрированной воды на выходе из деаэратора превышает атмосферное, несмотря на то, что выпар удаляется эжектором.

4) В традиционных деаэраторах осуществляется только термическая струйная и барботажная деаэрация.

В вакуумно-атмосферных деаэраторах АВАКС кроме термической деаэрации использованы процессы дросселирования, кавитации, турбулентной диффузии, центробежной сепарации, что позволило увеличить скорость деаэрации ориентировочно в 300 раз. Это дало возможность уменьшить объем деаэратора в 250 раз, рабочую массу в 30 раз (масса АВАКС 30-40 кг.).

5) Малые габариты деаэратора обуславливают высокую точность его изготовления и сборки в заводских условиях, обеспечивают возможность полного контроля и управления деаэрацией, гарантируют получение стабильно высоких (О 2 < 20 мкг/дм3) результатов деаэрации.

6) Затраты на монтаж деаэратора АВАКС ориентировочно в 100 раз меньше, чем для других вакуумных деаэраторов, так как не требуется монтаж вышки и прокладки внешних коммуникаций.

7) Запуск деаэратора АВАКС и вывод его на рабочий режим осуществляется в течение двух минут.

8) Не требуется регистрация деаэратора АВАКС в органах Госэнергонадзора и Госгортехнадзора.

9) Конструкция вакуумного деаэратора АВАКС настолько совершенна и проста, что его эксплуатация сведена только к его пуску и выключению.

В комплект поставки деаэрационной установки входит:

1) Деаэратор АВАКС в сборе с ответными фланцами1 шт.

2) Эжектор типа «ЭВ» в сборе с ответными фланцами1 шт.

3) Кран шаровой Ду 25 в комплекте со штуцерами 1 шт.

4) Стекло смотровое Ф 32 мм 1 шт.

5) Шланг соединительный Ф 32 мм  1 комп.

6) Хомут Ф 50 мм4 шт.

5.2.1 Устройство и принцип работы

Принципиальная схема деаэратора «АВАКС» приведена на рисунке 2.

Деаэратор состоит из следующих основных частей: завихрителя 1; корпуса 2; обтекателя 3.

Поток воды, поступающий под давлением в деаэратор, раскручивается завихрителем до определенных скоростей. Раскрученный поток за счет центробежных сил прижимается к стенкам корпуса, образуя вакуумную полость, в которой происходит испарения воды и выделение растворенного газа. Парогазовая смесь (выпар) удаляется из деаэратора с помощью эжектора через газоотводящую трубку. Продеаэрированная вода проходит обтекатель и уходит на слив.

 

1- центробежный завихритель; 2- корпус; 3- обтекатель

Рисунок 2- Принципиальная схема деаэратора АВАКС

 

Проектируемая схема деаэрации подпиточной воды представлена на рисунке 3. Вода на деаэрацию поступает с ХВО-3 с температурой 300С. Перед подачей в деаэрационную установку необходим подогрев воды до 600С в теплообменном аппарате. Давление на входе деаэратора должно быть 3,5 кгс/см2. Для поддержания этого давления устанавливаем насос подачи недеаэрированной воды. Выход деаэрированной воды осуществляем трубопроводом Ду 70 и Ду 100 в существующий корпус деаэрационного бака от колонки ДС-300.

 

Рисунок 3- Проектируемая схема деаэрации

 

Выпар из трубки деаэратора засасывается потоком рабочей воды в эжекторе типа ЭВ, предлагаемого в поставке от Кинешимского машиностроительного завода. Подача рабочей воды на эжектор осуществляется насосом К100-65-200. Пароводяная смесь попадает в общий коллектор Ду 150 и в охладитель выпара, находящийся на нулевой отметке.

5.2.2 Проектирование схемы

Принимаем к установке шесть деаэраторов трех типов:

 

Таблица 16 – Выбор деаэраторов

Производительность, тн/ч Масса, кг Габариты, мм Количество, шт
10-30 25 1160×252×180 2
30-50 30 1300×265×215 2
50-150 40 1500×319×245 2

 

Деаэраторы устанавливаем на металлической площадке, сваренной над баком-аккумулятором. Стойки над баком-аккумулятором свариваем из двух швеллеров №16 при вертикальной нагрузке до 3 тонн, скрепленных перьями вовнутрь. Швеллеры скрепляем пластинами из листа №6(6мм). Сечение стойки-250 мм(расстояние между полочками). Через каждые 0,5 м навариваем накладки из листа №6 размером 220×150мм. Высота стоек 4м, пролет между стойками при уклоне 0,0002 до 8,5м. Деаэраторы устанавливаются на горизонтальном участке трубопровода. В целях обеспечения удобства обслуживания деаэраторов и монтажа эжектора и емкостного оборудования расстояние между горизонтальной осью деаэратора и нулевой отметкой (пола) рекомендуется принять 1,5…2 метра.

 

Параметр Значение
Тип насоса Одноступенчатый, центробежный,консольный с односторонним всасом
Производительность, м3 100
Напор, м вод. ст. 50
Температура воды, 0С 85
Число оборотов, об./мин. 3000
Мощность электродвигателя, кВт 30

Таблица 17– Характеристика насоса К100-65-200.

 

 

5.2.3 Расчет теплообменного аппарата

 

Таблица 18- Исходные данные:

Расход воды, т/ч 210
Температура воды при входе в подогреватель, ˚С 30
Температура воды при выходе из подогревателя, ˚С 60
Давление греющего пара, кгс/см2 1,2
Температура насыщения греющего пара, ˚С 104

1) Тепловая мощность подогревателя

 

, (5.5)

 

 где G – количество подогреваемой воды

с – теплоёмкость воды, с=4,19 кДж/(кгК),

 - температура воды при выходе из подогревателя,

 - температура воды при входе в подогреватель.

 кДж/ч=7332,5 кДж/с=6,3 Гкал/ч

2) Часовой расход обогревающего пара, D, кг/ч, находится из уравнения теплового баланса

 

, (5.6)

 

где  - теплосодержание (энтальпия) обогревающего пара при выходе из подогревателя,

 - теплосодержание (энтальпия) обогревающего пара при входе в подогреватель,

 - КПД бойлера, учитывающий потери в окружающую среду.

кг/ч

3) Соотношение числа ходов греющего пара и нагреваемой воды

 

, (5.7)

 

 где живое сечение одного межпластинчатого канала;

Принимаем тип пластины 0,5 Пр, для этого типа пластины  

Рисунок 4-Принципиальная схема пластинчатого теплообменного аппарата

Таблица 19- Технические показатели пластины

Показатель Тип пластины 0,5 Пр
Габариты (длина х ширина х толщина) 1380х650х0,6
Поверхность теплообмена, кв.м 0,5
Вес (масса), кг 6,0
Эквивалентный диаметр канала, м 0,009

Продолжение таблицы 19

Показатель Тип пластины 0,5 Пр
Площадь поперечного сечения канала, кв.м 0,00285
Смачиваемый периметр в поперечном сечении канала, м 1,27
Ширина канала, мм 570
Зазор для прохода рабочей среды в канале, мм 5
Приведённая длина канала, м 0,8
Площадь поперечного сечения коллектора (угловое отверстие в пластине), кв. м 0,0283
Наибольший диаметр условного прохода присоединяемого штуцера, мм 200
Коэффициент общего гидравлического сопротивления 15/Re0.25
Коэффициент гидравлического сопротивления штуцера z 1,5
Коэффициент А 0,492
Коэффициент Б 3,0

 

Принимаем ;

Плотность воды определяется по средней температуре воды

,

 для

Принимаем

4) Общее живое сечение каналов в пакете

5) Скорость воды

,

6) Скорость пара

7) Эквивалентный расход потока по пару

8) Эквивалентный расход потока по воде

9) Число ступеней подогрева

 

 где удельный параметр пластины, ;

безразмерная удельная тепловая нагрузка;

, (5.8)

где максимально возможный температурный перепад;

Принимаем 1 ход в теплообменнике (симметричная компоновка).

10)  Средняя разность температур

Принимаем температуру конденсата 70˚С

˚С

11) Коэффициент теплоотдачи от пара к стенке пластины

 

, (5.9)

 

 где критерий Нуссельта,

коэффициент теплопроводности конденсата,  при ;

эквивалентный диаметр канала пластины,

Для вертикальной стенки при конденсации пара на ней критерий Нуссельта определяется:

, (5.10)

критерий Прандтля,

 где критерий конденсации,

,

здесь - критерий Галилея,

,

здесь - вязкость конденсата, ;

,

здесь - теплота испарения, ,

 - теплоёмкость конденсата, =4,2 кДж/(кг*˚С),

12) Коэффициент теплоотдачи от стенки пластины к воде

 

,

 

 где А – коэффициент пластины, А=0,492.

13) Коэффициент теплопередачи

 - толщина стенки трубы, =0,6*10-3 м,

 - теплопроводность стали, =60 Вт/(м2*˚С),

14) Тепловой поток

15) Площадь нагрева

16) Действительная поверхность нагрева всего подогревателя

17) Количество пластин при площади поверхности одной пластины fпл=0,5м2

18) Выбор теплообменного аппарата

Принимаем к установке пластинчатый теплообменный аппарат фирмы «APV» разборный с резиновыми прокладками типа N50 с поверхностью нагрева пластины 0,5м2. Материал пластин AISI 304, материал прокладок EPDM. Масса установки не более 460 кг.

Гидравлический расчёт пластинчатого теплообменника

1) Потери давления для нагреваемой воды

 

, (5.11)

где  - коэффициент, учитывающий накипеобразование, при отсутствии опытных данных принимаем ;

 Б – коэффициент, зависящий от типа пластины, Б = 3,0, /4,с.50/

2) Потеря давления в пластинчатом теплообменнике, ∆Рс, Па, /2, с.275/:

 

, (5.12)

 

 где  - потеря давления во всех ступенях одного канала;

- потеря давления в присоединительном штуцере.

,

здесь  - коэффициент гидравлического сопротивления канала;

 - приведённая длина канала, = 0,8 м;

 - эквивалентный диаметр канала;

- средняя скорость теплоносителя;

 - число последовательно соединённых ступеней.

,

здесь с – эксплуатационный коэффициент, учитывающий загрязнения пластин, а также их деформацию вследствие разности давлений в теплообменивающихся средах;

а – постоянная величина, зависящая от типа пластины, а=15;

Re – число Рейнольдса, зависящее от режима потока теплоносителя.

,

здесь  - скорость теплоносителя в штуцере;

 - коэффициент гидравлического сопротивления в штуцере,  

, /2,с.275/

 

Охладитель выпара

Охладитель выпара предназначается для конденсации пара, содержащегося в выпаре, с целью сохранения конденсата этого пара.

В качестве охлаждающей среды следует применять рабочую техническую воду, имеющую среднегодовую температуру 100С. Конденсат из охладителя выпара подается на всас насоса подачи рабочей воды на эжекторы, а перелив сливается в сборные баки нижних точек.

Обязательным элементом деаэрационной установки является охладитель выпара, который является групповым (один охладитель выпара на группу деаэра­торов), поверхностного (трубчатого) типа.

 

Таблица 20- Исходные данные:

Расход выпара, кг/ч 143,8
Температура воды при входе в охладитель, ˚С 10
Температура воды при выходе из охладителя, ˚С 25
Температура выпара на входе в охладитель, ˚С 60
Температура выпара на выходе из охладителя, ˚С 30

 

Объем выпара движется в межтрубном пространстве, а рабочая вода- по охлаждающим трубкам диаметром 17/19 мм. Материал трубок латунь Л68. Корпус охладителя выполнен из стальной трубы диаметром 1020×10 мм.

 

5.3.1 Тепловой расчет

Уравнение теплового баланса охладителя выпара (без учета потери тепла в окружающую среду и при энтальпии выпара, рав­ной энтальпии насыщенного пара):

 

 

, (5.13)

 

 где Dвып—расход (кг/ч);

iвып — энтальпия насыщенного пара, содержащегося в выпаре перед охладителем при давлении в деаэраторе ккал/кг;

Gв — расход охлаждающей воды, кг/ч;

i 2, i 1 — энтальпия воды при выходе из аппарата и входе в него, ккал/кг;

G к — расход конденсата пара из выпара, кг/ч;

i к — энтальпия конденсата, ккал/кг.

Поскольку относительное содержание воздуха в выпаре незначительно, можно принять:

.

Отсюда при отсутствии переохлаждения конденсата пара из вы­пара расход охлаждающей воды, Gв, кг/ч:

 

, (5.14)

 

где — теплота парообразования при давлении в деаэраторе, ккал/кг.

 

 кг/ч.

 

Поверхность охладителя выпара трубчатого типа, Fох, м2, определяется по формуле:

 

,(5.15)

 

 где ∆ t — среднелогарифмическая разность температур, °С;

k — коэффициент теплопередачи, ккал/м2*ч*град;

b — коэффициент запаса.

Значение коэффициента bвыбирается в зависимости от материала трубок, в том числе для латуни b = l,2-l,3.

Среднелогарифмическая разность температур, ∆t,0С, находится из выражения:

 

, (5.16)

 

где t 01, t 02 — температуры охлаждающей воды до и после охладителя выпара, °С;

t н — температура выпара, принимаемая равной температуре насыщения, соответствующей давлению в деаэраторе, °С.

0С.

Коэффициент теплопередачи, k, ккал/м2*ч*град, определяется по формуле:

 

, (5.17)

 где

— коэффициент теплоотдачи от пара к стенке трубки, ккал/м2*ч*град;

δ — толщина стенки трубок, м;

λ — коэффициент теплопроводности металла трубок, ккал/м*ч*град;

  — коэффициент теплоотдачи от стенки трубки к охлаждаю­щей среде, ккал/м2* ч* град.

  Значения  следует принимать в зависимости от начального содержания кислорода в поступающей в деаэратор воде и степени извлечения пара из выпара согласно таблице 21.


Таблица 21- Коэффициенты теплоотдачи

Начальное содержание кислорода в воде, мг/кг Степень извлечения пара из выпара, % Коэффициент теплоотдачи, ккал1м2*ч*град
1 10 1 10 99,5 99,5 99,9 99,9 7 000 6 000 5 000 4 000

 

Коэффициент теплоотдачи от стенки трубки к охлаждающей воде, αв, ккал/м2* ч* град, рекомендуется определять из выражения:

 

, (5.18)

 

 где z — множитель, зависящий от температуры охлаждающей воды;

—скорость охлаждающей воды, м/сек;

d — внутренний диаметр трубки, м.

 

Таблица 22-Значения z для воды на линии насыщения

Температура воды, °С 0 20 40 60 80 100 150 200 250
Величина z 1230 1 615 1990 2 310 2 670 2 740 3 230 3 590 3 590

 

Скорость охлаждающей воды в трубках выбирается в зависи­мости от материала трубок и допустимой потери давления. При латунных трубках рекомендуется принимать  не выше 2,5 м / сек.

 ккал/м2* ч* град.

 м2*ч*град/ккал.

 ккал/м2*ч*град.

м2

Число трубок в охладителе выпара, n:

 

,(5.19)

 

 где - удельный объем жидкости, м3/кг.

Длина трубок охладителя выпара, , м:

;

м.

Шаг между трубками,m, мм:

мм.

5.3.2 Гидравлический расчет

В объем гидравлического расчета входит определение диаметров трубопроводов и сопротивления движению воды в охладителе с.прилегающими к нему трубопроводами.

Диаметр трубопровода выпара dвып, м:

 

, (5.20)

 

где — удельный объем выпара, принимаемый равным удельному объему насыщенного пара при давлении в деаэраторе, м3/кг;

— скорость выпара в отводящем трубопроводе, м/сек.

Скорость выпара принимается в деаэраторах атмосферного давления 50—60 м/сек.

м.

Диаметр трубопровода охлаждающей воды и присоединитель­ных штуцеров рассчитывается по скорости воды, принимаемой рав­ной 1,0—2 м/сек.

Сопротивление движению воды в охладителе складывается из суммы местных сопротивлений входа и выхода (присоединительных штуцеров), поворотов (число ходов) итрения на прямых участках труб.

Местные сопротивления, ∆рм, Па, определяются по формуле:

 

,(5.21)

 

 где - коэффициент сопротивления, принимается по данным справочников.

 кПа

Сопротивление трения,∆ртр, Па, определяется по формуле:

 

, (5.22)

 

 где — коэффициент трения;

l — длина прямых участков трубы, м;

d — диаметр трубопровода или эквивалентный диаме

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...