Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классификация организмов по типу метаболизма




Биологические молекулы

Органические вещества, входящие в состав всех живых существ (животных, растений, грибов и микроорганизмов), представлены в основном аминокислотами, углеводами, липидами (часто называемые жирами) и нуклеиновыми кислотами. Так как эти молекулы имеют важное значение для жизни, метаболические реакции сосредоточены на создании этих молекул при строительстве клеток и тканей или разрушении их с целью использования в качестве источника энергии. Многие важные биохимические реакции объединяются вместе для синтеза ДНК и белков.

Тип молекулы Название формы мономера Название формы полимера Примеры форм полимера
Аминокислоты Аминокислоты Белки (полипептиды) Фибриллярные и глобулярные белки
Углеводы Моносахариды Полисахариды Крахмал, гликоген, целлюлоза
Нуклеиновые кислоты Нуклеотиды Полинуклеотиды ДНК и РНК

Аминокислоты и белки

Белки являются линейными биополимерами и состоят из остатков аминокислот, соединённых пептидными связями. Некоторые белки являются ферментами и катализируют химические реакции. Другие белки выполняют структурную или механическую функцию (например, образуют цитоскелет). Белки также играют важную роль в передаче сигнала в клетках, иммунных реакциях, агрегации клеток, активном транспорте через мембраны и регуляции клеточного цикла.

Липиды

Липиды входят в состав биологических мембран, например, плазматических мембран, являются компонентами коферментов и источниками энергии. Липиды являются гидрофобными (физическое свойство молекулы, которая «стремится» избежать контакта с водой. Сама молекула в этом случае называется гидрофобной ) или амфифильными(свойство молекул веществ (как правило, органических), обладающих одновременно лиофильными (в частности, гидрофильными) и лиофобными (гидрофобными) свойствами) биологическими молекулами, растворимыми в органических растворителях таких, как бензол или хлороформ. Жиры — большая группа соединений, в состав которых входят жирные кислоты и глицерин. Молекула трёхатомного спирта глицерина, образующая три сложные эфирные связи с тремя молекулами жирных кислот, называется триглицеридом. Наряду с остатками жирных кислот, в состав сложных липидов может входить, например, сфингозин (сфинголипиды), гидрофильные группы фосфатов (в фосфолипидах). Стероиды, например холестерол, представляют собой ещё один большой класс липидов.

Углеводы

Сахара могут существовать в кольцевой или линейной форме в виде альдегидов или кетонов, имеют несколько гидроксильных групп. Углеводы являются наиболее распространёнными биологическими молекулами. Углеводы выполняют следующие функции: хранение и транспортировка энергии (крахмал, гликоген), структурная (целлюлоза растений, хитин у грибов и животных). Наиболее распространенными мономерами сахаров являются гексозы — глюкоза, фруктоза и галактоза. Моносахариды входят в состав более сложных линейных или разветвленных полисахаридов.

Нуклеотиды

Полимерные молекулы ДНК и РНК представляют собой длинные неразветвленные цепочки нуклеотидов. Нуклеиновые кислоты выполняют функцию хранения и реализации генетической информации, которые осуществляются в ходе процессов репликации,транскрипции, трансляции, и биосинтеза белка. Информация, закодированная в нуклеиновых кислотах, защищается от изменений системами репарации и мультиплицируется при помощи репликации ДНК.

Некоторые вирусы имеют РНК-содержащий геном. Например, вирус иммунодефицита человека использует обратную транскрипцию для создания матрицы ДНК из собственного РНК-содержащего генома. Некоторые молекулы РНК обладают каталитическими свойствами (рибозимы) и входят в состав сплайсосом и рибосом.

Нуклеозиды — продукты присоединения азотистых оснований к сахару рибозе. Примерами азотистых оснований являются гетероциклические азотсодержащие соединения — производные пуринов и пиримидинов. Некоторые нуклеотиды также выступают в качестве коферментов в реакциях переноса функциональных групп.

 

АТФ

 

Метаболизм включает широкий спектр химических реакций, большинство из которых относятся к нескольким основным типам реакций переноса функциональных групп. Для переноса функциональных групп между ферментами, катализирующими химические реакции, используются коферменты. Каждый класс химических реакций переноса функциональных групп катализируется отдельными ферментами и их кофакторами.

Аденозинтрифосфат (АТФ) — один из центральных коферментов, универсальный источник энергии клеток. Этот нуклеотид используется для передачи химической энергии, запасенной в макроэргических связях, между различными химическими реакциями. В клетках существует небольшое количество АТФ, который постоянно регенерируется. Организм человека за сутки расходует массу АТФ, равную массе собственного тела. АТФ выступает в качестве связующего звена между катаболизмом и анаболизмом: при катаболических реакциях образуется АТФ, при анаболических — энергия потребляется.

Витамины

Витамины — низкомолекулярные органические вещества, необходимые в небольших количествах, причём, например, у человека большинство витаминов не синтезируется, а получается с пищей или через микрофлору кишечного тракта. В организме человека большинство витаминов являются кофакторами ферментов. Большинство витаминов приобретают биологическую активность в измененном виде, например, все водорастворимые витамины в клетках фосфорилируются или соединяются с нуклеотидами.

.

Минералы и кофакторы

Неорганические элементы играют важнейшую роль в обмене веществ. Около 99 % массы млекопитающего состоит из углерода, азота, кальция, натрия, магния, хлора, калия, водорода, фосфора, кислорода и серы. Биологически значимые органические соединения (белки, жиры, углеводы и нуклеиновые кислоты) содержат большое количество углерода, водорода, кислорода, азота и фосфора.

Многие неорганические соединения являются ионными электролитами. Наиболее важны для организма ионы натрия, калия, кальция, магния, хлоридов, фосфатов и гидрокарбонатов. Баланс этих ионов внутри клетки и во внеклеточной среде определяет осмотическое давление и рН. Концентрации ионов также играют важную роль для функционирования нервных имышечных клеток. Потенциал действия в возбудимых тканях возникает при обмене ионами между внеклеточной жидкостью и цитоплазмой. Электролиты входят и выходят из клетки через ионные каналы в плазматической мембране. Например, в ходе мышечного сокращения в плазматической мембране, цитоплазме и Т-трубочках перемещаются ионы кальция, натрия и калия.

Переходные металлы в организме являются микроэлементами, наиболее распространены цинк и железо. Эти металлы используются некоторыми белками (например, ферментами в качестве кофакторов) и имеют важное значение для регуляции активности ферментов и транспортных белков. Кофакторы ферментов обычно прочно связаны со специфическим белком, однако могут модифицироваться в процессе катализа, при этом после окончания катализа всегда возвращаются к своему первоначальному состоянию (не расходуются). Металлы-микроэлементы усваиваются организмом при помощи специальных транспортных белков и не встречаются в организме в свободном состоянии, так как связаны со специфическими белками-переносчиками (например, ферритином или металлотионеинами).

Классификация организмов по типу метаболизма

Все живые организмы можно разделить на восемь основных групп в зависимости от используемого: источника энергии, источника углерода и донора электронов (оксисляемого субстрата).

1. В качестве источника энергии живые организмы могут использовать: энергию света (фото-) или энергию химических связей (хемо-). Дополнительно для описания паразитических организмов использующих энергетические ресурсы хозяйской клетки применяют термин паратроф.

2. В качестве донора электронов (восстановителя) живые организмы могут использовать: неорганические вещества (лито-) или органические вещества (органо-).

3. В качестве источника углерода живые организмы используют: углекислый газ (авто-) или органические вещества (гетеро-). Иногда термины авто- и гетеротроф используют в отношении других элементов, которые входят в состав биологических молекул в восстановленной форме (например азота, серы). В таком случае "автотрофными по азоту" организмами являются виды, использующие в качестве источника азота окисленные неорганические соединения (например растения, могут осуществлять восстановление нитратов). А "гетеротрофными по азоту" являются организмы не способные осуществлять восстановление оксисленных форм азота и использующие в качестве его источника органические соединения (например животные, для которых источником азота служат аминокислоты).

Название типа метаболизма формируется путём сложения соответствующих корней и добавлением в конце корня -троф. В таблице представлены возможные типы метаболизма с примерами.

 

Источник энергии Донор электронов Источник углерода Тип метаболизма Примеры
Солнечный свет Фото- Органические вещества -органо- Органические вещества -гетеротроф Фотоорганогетеротрофы Пурпурные несерные бактерии, Галобактерии, Некоторые цианобактерии.
Углекислый газ -автотроф Фотоорганоавтотрофы Редкий тип метаболизма, связанный с окислением неусваиваемых веществ. Характерен для некоторых пурпурных бактерий.
Неорганические вещества -лито-(-гидро-) * Органические вещества -гетеротроф Фотолитогетеротрофы Некоторые цианобактерии, пурпурные и зелёные бактерии, также гелиобактерии.
Углекислый газ -автотроф Фотолитоавтотрофы Высшие растения, Водоросли, Цианобактерии, Пурпурные серные бактерии, Зелёные бактерии.
Энергия химических связей Хемо- Органические вещества -органо- Органические вещества -гетеротроф Хемоорганогетеротрофы Животные, Грибы, Большинство микроорганизмов редуцентов.
Углекислый газ -автотроф Хемоорганоавтотрофы Окисление трудноусваиваемых веществ, например факультативные метилотрофы, окисляющие муравьиную кислоту.
Неорганические вещества -лито- * Органические вещества -гетеротроф Хемолитогетеротрофы Метанобразующие археи, Водородные бактерии.
Углекислый газ -автотроф Хемолитоавтотрофы Железобактерии, Водородные бактерии, Нитрифицирующие бактерии, Серобактерии.
  • Некоторые авторы используют -гидро- когда в качестве донора электронов выступает вода.

Классификация была разработана группой авторов (А. Львов, К. ван Ниль, F. J. Ryan, Э. Тейтем) и утверждена на 11-м симпозиуме в лаборатории Колд-Спринг-Харбор и изначально служила для описания типов питания микроорганизмов. Однако в настоящее время применяется и для описания метаболизма других организмов.

Из таблицы очевидно, что метаболические возможности прокариот значительно разнообразнее по сравнению с эукариотами, которые характеризуются фотолитоавтотрофным и хемоорганогетеротрофным типом метаболизма.

Следует отметить, что некоторые виды микроорганизмов могут в зависимости от условий среды (освещение, доступность органических веществ и т.д.) и физиологического состояния осуществлять метаболизм разного типа. Такое сочетание нескольких типов метаболизма описывается как миксотрофия.

При применении данной классификации к многоклеточным организмам, важно понимать, что в рамках одного организма могут быть клетки отличающиеся типом обмена веществ. Так клетки надземных, фотосинтезирующих органов многоклеточных растений характеризуются фотолитоавтотрофным типом метаболизма, в то время как клетки подземных органов описываются как хемоорганогетеротрфные. Также как и в случае с микроорганизмами при изменении условий среды, стадии развития и физиологического состояния тип метаболизма клеток многоклеточного организма может изменяться. Так например, в темноте и на стадии прорастания семени, клетки высших растений осуществляют метаболизм хемоорганогетеротрофного типа.

Катаболизм

Катаболизмом называют метаболические процессы, при которых расщепляются относительно крупные органические молекулы сахаров, жиров, аминокислот. В ходе катаболизма образуются более простые органические молекулы, необходимые для реакций анаболизма (биосинтеза). Часто, именно в ходе реакций катаболизма организм мобилизует энергию, переводя энергию химических связей органических молекул, полученных в процессе переваривания пищи, в доступные формы: в виде АТФ, восстановленных коферментов и трансмембранного электрохимического потенциала. Термин катаболизм не является синонимом «энергетического обмена»: у многих организмов (например, у фототрофов) основные процессы запасания энергии не связаны напрямую с расщеплением органических молекул. Классификация организмов по типу метаболизма может быть основана на источнике получения энергии, что отражено в предыдущем разделе. Энергию химических связей используют хемотрофы, а фототрофы потребляют энергию солнечного света. Однако, все эти различные формы обмена веществ зависят от окислительно-восстановительных реакций, которые связаны с передачей электронов от восстановленных доноров молекул, таких как органические молекулы, вода, аммиак, сероводород, на акцепторные молекулы, такие как кислород, нитраты или сульфат. У животных эти реакции сопряжены с расщеплением сложных органических молекул до более простых, таких как двуокись углерода и воду. В фотосинтезирующих организмах — растениях и цианобактериях — реакции переноса электрона не высвобождают энергию, но они используются как способ запасания энергии, поглощаемой из солнечного света.

Катаболизм у животных может быть разделён на три основных этапа. Во-первых, крупные органические молекулы, такие как белки, полисахариды и липиды расщепляются до более мелких компонентов вне клеток. Далее эти небольшие молекулы попадают в клетки и превращается в ещё более мелкие молекулы, например, ацетил-КоА. В свою очередь, ацетильная группа кофермента А окисляется до воды и углекислого газа в цикле Кребса и дыхательной цепи, высвобождая при этом энергию, которая запасается в форме АТР.

Упрощённая схема катаболизма белков, сахаров и липидов

 

Получение энергии

В ходе катаболизма углеводов сложные сахара расщепляются до моносахаридов, которые усваиваются клетками. Попав внутрь, сахара (например, глюкоза и фруктоза) в процессе гликолиза превращаются в пируват, при этом вырабатывается некоторое количество АТФ. Пировиноградная кислота (пируват) является промежуточным продуктом в нескольких метаболических путях. Основной путь метаболизма пирувата — превращаение в ацетил-КоА и далее поступление в цикл трикарбоновых кислот. При этом в цикле Кребса в форме АТФ запасается часть энергии, а также восстанавливаются молекулы NADH и FAD. В процессе гликолиза и цикла трикарбоновых кислот образуется диоксид углерода, который является побочным продуктом жизнедеятельности. В анаэробных условиях в результате гликолиза из пирувата при участии фермента лактатдегидрогеназы образуется лактат, и происходит окисление NADH до NAD+, который повторно используется в реакциях гликолиза. Существует также альтернативный путь метаболизма моносахаридов — пентозофосфатный путь, в ходе реакций которого энергия запасается в форме восстановленного кофермента NADPH и образуются пентозы, например, рибоза, необходимая для синтеза нуклеиновых кислот.

 

Жиры на первом этапе катаболизма гидролизуются в свободные жирные кислоты и глицерин. Жирные кислоты расщепляются в процессе бета-окисления с образованием ацетил-КоА, который в свою очередь далее катаболизируется в цикле Кребса, либо идет на синтез новых жирных кислот. Жирные кислоты выделяют больше энергии, чем углеводы, так как жиры содержат удельно больше атомов водорода в своей структуре.

 

Аминокислоты либо используются для синтеза белков и других биомолекул, либо окисляются до мочевины, диоксида углерода и служат источником энергии. Окислительный путь катаболизма аминокислот начинается с удаления аминогруппы ферментами трансаминазами. Аминогруппы утилизируются в цикле мочевины; аминокислоты, лишённые аминогрупп называют кетокислотами. Некоторые кетокислоты — промежуточные продукты цикла Кребса. Например, при дезаминировании глутамата образуется альфа-кетоглутаровая кислота. Гликогенные аминокислоты также могут быть преобразованы в глюкозу в реакциях глюконеогенеза.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...