Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Контрольная работа №3




Задание №1

Программирование алгоритмов разветвляющейся и циклической структуры

Задание: разработать алгоритм табулирования функции. Вычислить значение функции при изменении аргумента в указанном диапазоне и с заданным шагом. Организовать вывод значения аргумента и вычисленного значения функции в виде таблицы.

 


 

Текст программы:

program z1;

uses crt; {модуль расширения возможностей текстового

ввода-вывода}

var a, b, x, y, x0, xk, dx: real;

Begin

clrscr; {очистка экрана}

write ('Введите а ');

readln (a);

write ('Введите b ');

readln (b);

write ('Введите x0 ');

readln (x0);

write ('Введите xk ');

readln (xk);

write ('Введите dx ');

readln (dx);

writeln (' ТАБЛИЦА ФУНКЦИИ Y(X) ');

writeln (' X', ' ', ' Y(X) ');

x:=x0;

Repeat

if x<0.1 then y:=sqrt(a*x*x+b*sin(x)+1);

if x=0.1 then y:=a*x+b;

if x>0.1 then y:=sqrt(a*x*x+b*cos(x)+1);

writeln (x:8:3, ' ', y:8:3);

x:=x+dx;

until x>xk;

readln;

end.


 

Результат программы


Алгоритм решения задачи


 

Ответы на вопросы по дисциплине «Информатика»

1. Информатика – предмет и задачи.

Информатика – это техническая наука, систематизирующая приемы создания, хранения, воспроизведения, обработки и передачи данных средствами вычислительной техники, а также принципы функционирования этих средств и методы управления ими.

Предмет информатики составляют следующие понятия:

- аппаратное обеспечение средств вычислительной техники;

- программное обеспечение средств вычислительной техники;

- средства взаимодействия аппаратного и программного обеспечения;

- средства взаимодействия человека с аппаратными и программными средствами.

Основной задачей информатики является систематизация приемов и методов работы с аппаратными и программными средствами вычислительной техники. Цель систематизации состоит в выделении наиболее передовых и эффективных технологий, автоматизации обработки информации. [1]

2. Информация. Свойства информации.

Информация (от латинского informatio – разъяснение, изложение) – в самом общем понимании представляет собой меру распределения материи и энергии в пространстве и во времени, меру изменений, которыми сопровождаются все протекающие в мире процессы.

Основными свойствами информации являются:

* способность воздействовать на психику;

* значимость (полнота);

* достоверность;

* целостность;

* адекватность.

Способность воздействовать на психику – неотъемлемое свойство информации. Фундаментальное свойство информации (применительно к человеку) – оторвавшись от объекта отражения существовать самостоятельно, стать содержимым памяти, то есть самостоятельно участвовать в психических процессах, трансформируясь в представления, знания, умения, навыки. [1]

Значимость информации – свойство информации сохранять свою потребительскую ценность для получателя в течение времени, т.е. не подвергаться моральному старению.

Достоверность информации – соответствие полученной информации действительной обстановке. Достоверность достигается:

* обозначением времени свершения событий, сведения о которых передаются;

* тщательным изучением и сопоставлением данных, полученных из различных источников;

* проверкой сомнительных сведений; своевременным скрытием дезинформационных и маскировочных мероприятий;

* исключением искаженной информации, передаваемой по техническим средствам.

Целостность информации – это неизменность информации в условиях случайных или преднамеренных действий в процессе эксплуатации информационной системы. Под целостностью информации также понимается актуальность и непротиворечивость информации, ее защищенность от разрушения и несанкционированного изменения.

Адекватность или старение информации – свойство информации утрачивать со временем свою практическую ценность, обусловленное изменением состояния отображаемой ею предметной области. [1]

3. Носители данных. Операции с данными.

Носитель данных – физическое тело или среда, используемые для машинной записи и хранения различных данных (информации). В качестве носителей данных используют перфокарты и перфоленты, магнитные диски, ленты и барабаны, оптические диски, фотобумагу, фотоплёнку, термопластическую плёнку и др., на которые информация записывается посредством изменения их механических, магнитных, оптических и иных свойств или формы (см. Запись и воспроизведение информации). Носители данных бывают одноразового и многократного использования. На носителях первого типа информация заносится один раз и в таком виде хранится сколь угодно долго при многократном воспроизведении (напр., перфолента, фото – и термоплёнка). Носители второго типа допускают многократную запись информации на одних и тех же участках тела (среды) и её стирание, если это необходимо (напр., магнитные ленты и диски, реверсивные оптические диски). [2]

В ходе информационного процесса данные преобразуются из одного вида в другой с помощью различных методов. Обработка данных включает в себя множество операций. По мере развития научно-технического прогресса и общего усложнения связей в человеческом обществе возрастают неуклонно трудозатраты на обработку данных. Прежде всего, это связано с постоянным усложнением условий управления производством и обществом. Второй фактор, также вызывающий общее увеличение объемов обрабатываемых данных, связан с научно-техническим прогрессом, а именно с быстрыми темпами появления и внедрения новых носителей данных, средств их хранения и доставки.

В структуре возможных операций с данными можно выделить следующие:

• сбор - накопление информации с целью обеспечения достаточной полноты для принятия решений;

• формализация - приведение данных, поступающих из разных источников, к одинаковой форме, чтобы сделать их сопоставимыми между собой, то есть повысить их уровень доступности;

• фильтрация - отсеивание «лишних» данных, в которых нет необходимости для принятия решений; при этом должен уменьшаться уровень «шума», а достоверность и адекватность данных должны возрастать;

• сортировка - упорядочение данных по заданному признаку с целью удобства использования; эта процедура повышает доступность информации;

• архивация - организация хранения данных в удобной и легкодоступной форме; служит для снижения экономических затрат по хранению данных и повышает общую надежность информационного процесса в целом;

• защита - комплекс мер, направленных на предотвращение утраты, воспроизведения и модификации данных;

• транспортировка - прием и передача (доставка и поставка) данных между удаленными участниками информационного процесса; при этом источник данных в информатике принято называть сервером, а потребителя - клиентом; • преобразование данных - перевод данных из одной формы в другую или из одной структуры в другую. Преобразование данных часто связано с изменением типа носителя, например книги можно хранить в обычной бумажной форме, но можно использовать для этого и электронную форму, и микрофотопленку. Необходимость в многократном преобразовании данных возникает также при их транспортировке, особенно если она осуществляется средствами, не предназначенными для транспортировки данного вида данных. В качестве примера можно упомянуть, что для транспортировки цифровых потоков данных по каналам телефонных сетей (которые изначально были ориентированы только на передачу аналоговых сигналов в узком диапазоне частот) необходимо преобразование цифровых данных в некое подобие звуковых сигналов, чем и занимаются специальные устройства - телефонные модемы. [1]

4. Кодирование текстовых данных.

Если каждому символу алфавита сопоставить целое число, то можно с помощью двоичного кода кодировать текстовые данные. Восьми двоичных разрядов достаточно для кодирования 256 различных символов. Этого хватает, чтобы закодировать все строчные и прописные буквы английского или русского алфавита, а также знаки препинания, цифры, символы основных арифметических операций и некоторые специальные символы, например «%».

Технически это просто, но существуют организационные сложности. Для того чтобы весь мир одинаково кодировал текстовые данные, нужны единые таблицы кодирования, а это трудно осуществить из-за использования различных символов в национальных алфавитах. Сейчас по ряду причин наибольшее распространение получил стандарт США ANСII (American National Code for Information Interchange) – Американский национальный код для обмена информацией. В системе кодирования ANСII закреплены две таблицы кодирования: базовая со значениями кодов от 0 до 127 и расширенная с кодами от 128 до 255. [8]

Коды от 0 до 31 базовой таблицы содержат так называемые управляющие коды, которым не соответствуют символы языка. Они служат для управления устройствами ввода-вывода. Коды с 32 по 127 служат для кодирования символов английского алфавита, знаков препинания, цифр и некоторых других символов. Расширенная таблица с кодами от 128 до 255 содержит набор специальных символов.

Аналогичные системы кодирования разработаны и в других странах. В России большое распространение имеет код КОИ-8.

Трудности создания единой системы кодирования текстовых данных связаны с ограниченным набором кодов (256). Если кодировать символы не 8-разрядными двоичными числами, а 16-разрядными, это позволит иметь набор из 65 536 различных кодов. Этого достаточно, чтобы в одной таблице разместить символы большинства языков. Такая система кодирования называется Unicode – универсальный код. Переход к этой системе долго сдерживался из-за недостатка памяти компьютеров, так как в системе Unicode все текстовые документы становятся вдвое длиннее. В настоящее время технические сложности преодолены и происходит постепенный переход на универсальную систему кодирования. [1]

5. Кодирование графических данных.

Общепринятым сегодня считается представление черно-белых иллюстраций в виде комбинации точек с 256 градациями серого цвета. При этом для кодирования яркости любой точки достаточно 8-разрядного двоичного числа.

Для кодирования цветных графических изображений применяется принцип декомпозиции произвольного цвета на три основных – красный, зелёный и синий. Для кодирования яркости каждой составляющей используется 256 значений (8 двоичных разрядов). Для кодирования цвета используются 24 разряда. Такая система кодирования обеспечивает представление 16,5 млн различных цветов. [8]

6. Кодирование звуковой информации.

Компьютер широко применяют в настоящее время в различных сферах. Не стала исключением и обработка звуковой информации, музыка. До 1983 года все записи музыки выходили на виниловых пластинках и компакт-кассетах. В настоящее время широкое распространение получили компакт-диски. Если имеется компьютер, на котором установлена студийная звуковая плата, с подключенными к ней MIDI-клавиатурой и микрофоном, то можно работать со специализированным музыкальным программным обеспечением.

Условно его можно разбить на несколько видов:

1) всевозможные служебные программы и драйверы, предназначенные для работы с конкретными звуковыми платами и внешними устройствами;

2) аудиоредакторы, которые предназначены для работы со звуковыми файлами, позволяют производить с ними любые операции - от разбиения на части до обработки эффектами;

3) программные синтезаторы, которые появились сравнительно недавно и корректно работают только на мощных компьютерах. Они позволяют экспериментировать с созданием различных звуков;

и другие. [8]

К первой группе относятся все служебные программы операционной системы. Так, например, win 95 и 98 имеют свои собственные программы микшеры и утилиты для воспроизведения/записи звука, проигрывания компакт-дисков и стандартных MIDI - файлов. Установив звуковую плату можно при помощи этих программ проверить ее работоспособность. Например, программа Фонограф предназначена для работы с wave-файлами (файлы звукозаписи в формате Windows). Эти файлы имеют расширение.WAV. Эта программа предоставляет возможность воспроизводить, записывать и редактировать звукозапись приемами, аналогичными приемам работы с магнитофоном. Желательно для работы с Фонографом подключить микрофон к компьютеру. Если необходимо сделать звукозапись, то нужно определиться с качеством звука, так как именно от нее зависит продолжительность звукозаписи. Возможная продолжительность звучания тем меньше, чем выше качество записи. При среднем качестве записи можно удовлетворительно записывать речь, создавая файлы продолжительностью звучания до 60 секунд. Примерно 6 секунд будет продолжительность записи, имеющая качество музыкального компакт - диска. [1]

А как же происходит кодирование звука? С самого детства мы сталкиваемся с записями музыки на разных носителях: грампластинках, кассетах, компакт-дисках и т.д. В настоящее время существует два основных способах записи звука: аналоговый и цифровой. Но для того чтобы записать звук на какой-нибудь носитель его нужно преобразовать в электрический сигнал.

Это делается с помощью микрофона. Самые простые микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Изменения напряжения тока точно отражают звуковые волны.

Переменный электрический ток, который появляется на выходе микрофона, называется аналоговым сигналом. Применительно к электрическому сигналу «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде. Он точно отражает форму звуковой волны, которая распространяется в воздухе. [2]

Звуковую информацию можно представить в дискретной или аналоговой форме. Их отличие в том, что при дискретном представлении информации физическая величина изменяется скачкообразно («лесенкой»), принимая конечное множество значений. Если же информацию представить в аналоговой форме, то физическая величина может принимать бесконечное количество значений, непрерывно изменяющихся.

Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка свою форму изменяет непрерывно. Но у аналоговых записей на магнитную ленту есть большой недостаток - старение носителя. За год фонограмма, которая имела нормальный уровень высоких частот, может их потерять. Виниловые пластинки при проигрывании их несколько раз теряют качество. Поэтому преимущество отдают цифровой записи.

В начале 80-х годов появились компакт-диски. Они являются примером дискретного хранения звуковой информации, так как звуковая дорожка компакт - диска содержит участки с различной отражающей способностью. Теоретически эти цифровые диски могут служить вечно, если их не царапать, т.е. их преимуществами являются долговечность и неподверженность механическому старению. Другое преимущество заключается в том, что при цифровой перезаписи нет потери качества звука.

На мультимедийных звуковых картах можно найти аналоговые микрофонный предусилитель и микшер. [1]

7. Принцип действия компьютера.

Вся информация хранится на жестком диске. Когда Вы включаете компьютер, то часть данных, необходимых для нормального функционирования системы, загружается в оперативную память (ОЗУ - оперативное запоминающее устройство). Кроме того, туда же могут отправлять свои данные и другие устройства в процессе работы компа. За обработку данных отвечает процессор (ЦП - центральный процессор). Информация поступает в ЦП из ОЗУ, и после обработки туда же и возвращается. А потом уж она может быть отправлена адресату, то бишь устройству, которое эти данные и отправило в оперативную память для последующей обработки (правда так происходит не всегда, но об этом много позже). Если Вам понадобилось информацию сохранить надолго, то Вы "сбрасываете" ее на жесткий диск, так как ОЗУ может хранить данные только при условии, что к нему постоянно подается электропитание. [11]

Если какому-нить устройству вдруг захотелось, чтобы ЦП обработал для него что-либо, то для начала необходимо подготовить данные затем, отправив их в память, сообщить процессору, что данные эти надо обработать. Подождать, а потом может быть (в зависимости от поставленной задачи) получить обработанные данные обратно, а может и какому другому устройству их отправить. Устройств много, а процессор один и на всех их его сразу не хватает. Что делать? Очень просто - вставать в очередь и ждать. Существует иерархия среди устройств. Кому-то ЦП обработает данные сразу, а кому-то придется ждать до второго пришествия.

Посмотрите на рисунок. СPU - это центральный процессор, RAM - оперативная память, HDD - жесткий диск, а device - какое-нить устройство, ну например, модем. [1]

Понятно, что пользователь должен наблюдать за неким результатом своей работы. Вот для этого предназначен монитор, данные для которого готовит видеокарта (кстати, именно это устройство может обратиться к ЦП в обход ОЗУ). Например: Вы запустили MS Word и нажали на какую-нить клавишу, скажем [G]. На экране, в текстовом поле появилась буковка и что не мало важно, это буковка G. Что произошло? Во-первых, Вы, запустив программу MS Word, отдали ей управление компьютером (который находится еще и под управлением операционной системой). Во-вторых, нажав на клавишу [G], заставили мини-процессор клавиатуры послать код этой клавиши в компьютер. В-третьих, процессор, обработав команду и данные, которые были подготовлены программой, отправил их к видеокарте. В-четвертых, видеокарта, получив команду и данные и обработав их по-своему, отправила все в монитор, а тот, в свою очередь вывел то, что было приказано. Все. На экране Вы наблюдаете букву G. [11]

Из последнего примера можно сделать вывод, что компьютер это не только его аппаратная часть (hardware), но и программная часть тоже (software). То есть одно от другого не отделимо. Более того, скажу Вам - любое устройство компьютера имеет собственную программу управления, которая называется драйвер (driver). Без таких программ большинство устройств компа работать не будет. Общее управление над компьютером берет на себя операционная система (ОС). К слову сказать, это самое слабое место современного ПК.

Вообще, следует отметить, что все ПК работают по фон-неймановским принципам программного управления. Венгр по национальности Джон фон Нейман в 1930 году эмигрировал в США, где в 1945 году разработал принципы программного управления ЭВМ. И до сих пор мир инфотехнологий пользуется этими правилами (хоть и не самыми удобными и имеющими свои недостатки), так как никто ничего другого толком предложить не может (есть и не фоннеймовские компы, но они пока обладают еще большими недостатками). Вот в чем заключаются эти правила:

1. Принцип двоичного кодирования. Это означает, что вся информация в компьютере передается и хранится в двоичном виде.

2. Принцип программного управления. Тут речь идет о том, что программа представляет собой набор команд, которые процессор выполняет автоматически и в определенной последовательности.

3. Принцип однородности памяти. Разнотипная информация различается по способу использования, а не по способу кодирования.

4. Принцип адресности. Информация размещается в ячейках памяти, которые имеют точный адрес. Зная адрес, ЦП может получить доступ к нужной информации в любой момент времени. [1]

8. Базовая аппаратная конфигурация компьютера.

Базовой аппаратной конфигурацией персонального компьютера называют минимальный комплект аппаратных средств, достаточный для начала работы с компьютером. С течением времени понятие базовой конфигурации постепенно меняется.

Чаще всего персональный компьютер состоит из следующих устройств:

· Системный блок

· Монитор

· Клавиатура

· Мышь [1]

Дополнительно могут подключатся другие устройства ввода и вывода информации, например звуковые колонки, принтер, сканер...

Системный блок — основной блок компьютерной системы. В нем располагаются устройства, считающиеся внутренними. Устройства, подключаемые к системному блоку снаружи, считаются внешними. Для внешних устройств используют также термин периферийное оборудование.

Монитор — устройство для визуального воспроизведения символьной и графической информации. Служит в качестве устройства вывода. Для настольных ПК в настоящее время наиболее распространены мониторы, основанные на электронно-лучевых трубках. Они отдаленно напоминают бытовые телевизоры. [2]

Клавиатура — клавишное устройство, предназначенное для управления работой компьютера и ввода в него информации. Информация вводится в виде алфавитно-цифровых символьных данных.

Мышь — устройство «графического» управления.

9. Внутренние устройства системного блока.

Внутренние устройства персонального компьютера.
Внутренними считаются устройства, располагающиеся в системном блоке. Доступ к некоторым из них имеется на лицевой панели, что удобно для быстрой смены информационных носителей, например гибких магнитных дисков. Разъемы некоторых устройств выведены на заднюю стенку — они служат для подключения периферийного оборудования. К некоторым устройствам системного блока доступ не предусмотрен — для обычной работы он не требуется. [11]

Процессор. Микропроцессор — основная микросхема персонального компьютера. Все вычисления выполняются в ней. Основная характеристика процессора — тактовая частота (измеряется в мегагерцах, МГц). Чем выше тактовая частота, тем выше производительность процессора. Так, например, при тактовой частоте 500 МГц процессор может за одну секунду изменить свое состояние 500 миллионов раз. Для большинства операций одного такта недостаточно, поэтому количество операций, которые процессор может выполнить в секунду, зависит не только от тактовой частоты, но и от сложности операций. [8]

Единственное устройство, о существовании которого процессор «знает от рождения», — оперативная память — с нею он работает совместно. Оттуда поступают данные и команды. Данные копируются в ячейки процессора (они называются регистрами), а потом преобразуются в соответствии с содержанием команд. Более полную картину того, как процессор взаимодействует с оперативной памятью, вы получите в главах, посвященных основам программирования.

Оперативная память. Оперативную память можно представить как обширный массив ячеек, в которых хранятся числовые данные и команды в то время, когда компьютер включен. Объем оперативной памяти измеряется в миллионах байтов — мегабайтах (Мбайт). [1]

Процессор может обратиться к любой ячейке оперативной памяти (байту), поскольку она имеет неповторимый числовой адрес. Обратиться к индивидуальному биту оперативной памяти процессор не может, так как у бита нет адреса. В то же время, процессор может изменить состояние любого бита, но для этого требуется несколько действий. [1]

Материнская плата. Материнская плата — это самая большая плата персонального компьютера. На ней располагаются магистрали, связывающие процессор с оперативной памятью, — так называемые шины. Различают шину данных, по которой процессор копирует данные из ячеек памяти, адресную шину, по которой он подключается к конкретным ячейкам памяти, и шину команд, по которой в процессор поступают команды из программ. К шинам материнской платы подключаются также все прочие внутренние устройства компьютера. Управляет работой материнской платы микропроцессорный набор микросхем — так называемый чипсет.

Видеоадаптер. Видеоадаптер — внутреннее устройство, устанавливаемое в один из разъемов материнской платы. В первых персональных компьютерах видеоадаптеров не было. Вместо них в оперативной памяти отводилась небольшая область для хранения видеоданных. Специальная микросхема (видеоконтроллер) считывала данные из ячеек видеопамяти и в соответствии с ними управляла монитором. [1]

По мере улучшения графических возможностей компьютеров область видеопамяти отделили от основной оперативной памяти и вместе с видеоконтроллером выделили в отдельный прибор, который назвали видеоадаптером. Современные видеоадаптеры имеют собственный вычислительный процессор (видеопроцессор), который снизил нагрузку на основной процессор при построении сложных изображений. Особенно большую роль видеопроцессор играет при построении на плоском экране трехмерных изображений. В ходе таких операций ему приходится выполнять особенно много математических расчетов. [2]

В некоторых моделях материнских плат функции видеоадаптера выполняют микросхемы чипсета — в этом случае говорят, что видеоадаптер интегрирован с материнской платой. Если же видеоадаптер выполнен в виде отдельного устройства, его называют видеокартой. Разъем видеокарты выведен на заднюю стенку. К нему подключается монитор.

Звуковой адаптер. Для компьютеров IBM PC работа со звуком изначально не была предусмотрена. Первые десять лет существования компьютеры этой платформы считались офисной техникой и обходились без звуковых устройств. В настоящее время средства для работы со звуком считаются стандартными. Для этого на материнской плате устанавливается звуковой адаптер. Он может быть интегрирован в чипсете материнской платы или выполнен как отдельная подключаемая плата, которая называется звуковой картой.

Разъемы звуковой карты выведены на заднюю стенку компьютера. Для воспроизведения звука к ним подключают звуковые колонки или наушники. Отдельный разъем предназначен для подключения микрофона. При наличии специальной программы это позволяет записывать звук. Имеется также разъем (линейный выход) для подключения к внешней звукозаписывающей или звуковоспроизводящей аппаратуре (магнитофонам, усилителям и т.п.).

Жесткий диск. Поскольку оперативная память компьютера очищается при отключении питания, необходимо устройство для длительного хранения данных и программ. В настоящее время для этих целей широко применяют так называемые жесткие диски. [2]

Принцип действия жесткого диска основан на регистрации изменений магнитного поля вблизи записывающей головки.

Основным параметром жесткого диска является емкость, измеряемая в гигабайтах (миллиардах байтов), Гбайт. Средний размер современного жесткого диска составляет 80 — 160 Гбайт, причем этот параметр неуклонно растет. [11]

Дисковод гибких дисков. Для транспортировки данных между удаленными компьютерами используют так называемые гибкие диски. Стандартный гибкий диск (дискета) имеет сравнительно небольшую емкость 1,44 Мбайт. По современным меркам этого совершенно недостаточно для большинства задач хранения и транспортировки данных, но низкая стоимость носителей и высокая степень готовности к работе сделали гибкие диски самыми распространенными носителями данных.

Для записи и чтения данных, размещенных на гибких дисках, служит специальное устройство — дисковод. Приемное отверстие дисковода выведено на лицевую панель системного блока.

Дисковод CD-ROM. Для транспортировки больших объемов данных удобно использовать компакт-диски CD-ROM. Эти диски позволяют только читать ранее записанные данные — производить запись на них нельзя. Емкость одного диска составляет порядка 650-700 Мбайт.

Для чтения компакт-дисков служат дисководы CD-ROM. Основной параметр дисковода CD-ROM— скорость чтения. Она измеряется в кратных единицах. За единицу принята скорость чтения, утвержденная в середине 80-х гг. для музыкальных компакт-дисков (аудиодисков). Современные дисководы CD-ROM обеспечивают скорость чтения 40х - 52х.
Основной недостаток дисководов CD-ROM — невозможность записи дисков — преодолен в современных устройствах однократной записи — CD-R. Существуют также устройства CD-RW, позволяющие осуществлять многократную запись. [2]

Принцип хранения данных на компакт-дисках не магнитный, как у гибких дисков, а оптический.

Коммуникационные порты. Для связи с другими устройствами, например принтером, сканером, клавиатурой, мышью и т. п., компьютер оснащается так называемыми портами. Порт — это не просто разъем для подключения внешнего оборудования, хотя порт и заканчивается разъемом. Порт — более сложное устройство, чем просто разъем, имеющее свои микросхемы и управляемое программно.

Сетевой адаптер. Сетевые адаптеры необходимы компьютерам, чтобы они могли обмениваться данными между собой. Этот прибор следит за тем, чтобы процессор не подал новую порцию данных на внешний порт, пока сетевой адаптер соседнего компьютера не скопировал к себе предыдущую порцию. После этого процессору дается сигнал о том, что данные забраны и можно подавать новые. Так осуществляется передача.

Когда сетевой адаптер «узнает» от соседнего адаптера, что у того есть порция данных, он копирует их к себе, а потом проверяет, ему ли они адресованы. Если да, он передает их процессору. Если нет, он выставляет их на выходной порт, откуда их заберет сетевой адаптер очередного соседнего компьютера. Так данные перемещаются между компьютерами до тех пор, пока не попадут к адресату. [11]

Сетевые адаптеры могут быть встроены в материнскую плату, но чаще устанавливаются отдельно, в виде дополнительных плат, называемых сетевыми картами.

 

10. Системы, расположенные на материнской плате.

На материнской плате расположены:

1. Наборы больших однокристальных электронных микросхем – чипов (центральный процессор, другие процессоры, интегрированные контроллеры устройств и их интерфейсы)

2. Микросхемы оперативной памяти и разъемы их плат

3. Микросхемы электронной логики

4. Простые радиоэлементы (транзисторы, конденсаторы, сопротивления и др.)

5. Разъемы системной шины (стандартов ISA, EISA, VESA, PCI и др.)

6. Слоты для подключения плат расширений (видеокарт или видеоадаптеров, звуковых карт, сетевых карт, интерфейсов периферийных устройств IDE, EIDE, SCSI…)

7. Разъемы портов ввода/вывода (COM, LPT) [1]

 

11. Оперативная память.

Оперативная память (RAM — Random Access Memory) — это массив кристаллических ячеек, способных хранить данные. Существует много различных типов оперативной памяти, но с точки зрения физического принципа действия различают динамическую память (DRAM) и статическую память (SRAM).

Ячейки динамической памяти (DRAM) можно представить в виде микроконденсаторов, способных накапливать заряд на своих обкладках. Это наиболее распространенный и экономически доступный тип памяти. Недостатки этого типа связаны, во-первых, с тем, что как при заряде, так и при разряде конденсаторов неизбежны переходные процессы, то есть запись данных происходит сравнительно медленно. Второй важный недостаток связан с тем, что заряды ячеек имеют свойство рассеиваться в пространстве, причем весьма быстро. Если оперативную память постоянно не «подзаряжать», утрата данных происходит через несколько сотых долей секунды. Для борьбы с этим явлением в компьютере происходит постоянная регенерация (освежение, подзарядка) ячеек оперативной памяти. Регенерация осуществляется несколько десятков раз в секунду и вызывает непроизводительный расход ресурсов вычислительной системы. [11]

Ячейки статической памяти (SRAM) можно представить как электронные микроэлементы — триггеры, состоящие из нескольких транзисторов. В триггере хранится не заряд, а состояние (включен/выключен), поэтому этот тип памяти обеспечивает более высокое быстродействие, хотя технологически он сложнее и, соответственно, дороже.

Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспомогательной памяти (так называемой кэш-памяти), предназначенной для оптимизации работы процессора.

Каждая ячейка памяти имеет свой адрес, который выражается числом. В большинстве современных процессоров предельный размер адреса обычно составляет 32 разряда, а это означает, что всего независимых адресов может быть 232. Одна адресуемая ячейка содержит восемь двоичных ячеек, в которых можно сохранить 8 бит, то есть один байт данных.

Таким образом, в современных компьютерах возможна непосредственная адресация к полю памяти размером 232 байт = 4 Гбайт. Однако это отнюдь не означает, что именно столько оперативной памяти непременно должно быть в компьютере. Предельный размер поля оперативной памяти, установленной в компьютере, определяется микропроцессорным комплектом (чипсетом) материнской платы и обычно не может превосходить нескольких Гбайт. Минимальный объем памяти определяется требованиями операционной системы и для современных компьютеров составляет 128 Мбайт. [2]

Представление о том, сколько оперативной памяти должно быть в типовом компьютере, непрерывно меняется. В середине 80-х годов поле памяти размером 1 Мбайт казалось огромным, в начале 90-х годов достаточным считался объем 4 Мбайт, к середине 90-х годов он увеличился до 8 Мбайт, а затем и до 16 Мбайт. Сегодня типичным считается размер оперативной памяти в 256 Мбайт, но тенденция к росту сохраняется.

Оперативная память в компьютере размещается на стандартных панельках, называемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Если к разъемам есть удобный доступ, то операцию можно выполнять своими руками. Если удобного доступа нет, может потребоваться неполная разборка узлов системного блока, и в таких случаях операцию поручают специалистам.

Основными характеристиками модулей оперативной памяти являются объем памяти и скорость передачи данных. Сегодня наиболее распространены модули объемом 128-512 Мбайт. Скорость передачи данных определяет максимальную пропускную способность памяти (в Мбайт/с или Гбайт/с) в оптимальном режиме доступа. При этом учитывается время доступа к памяти, ширина шины и дополнительные возможности, такие как передача нескольких сигналов за один такт работы. Одинаковые по объему модули могут иметь разные скоростные характеристики. [11]

Иногда в качестве определяющей характеристики памяти используют время доступа. Оно измеряется в миллиардных долях секунды (наносекундах, нс). Для современных модулей памяти это значение может составлять 5 не, а для особо быстрой памяти, используемой в основном в видеокартах, — снижаться до 2-3 не.

12. Процессор. Основные параметры процессоров.

Процессор — основная микросхема компьютера, в которой и производятся все вычисления. Конструктивно процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называют регистрами. Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах. Среди регистров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом и основано исполнение программ. [1]

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами. Основных шин три: шина данных, адресная шина и командная шина.

Адресная шина. У процессоров семей

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...