Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Раздел 2. Земля как физическое тело. Внутренние оболочки Земли. Геохимические особенности Земли




Форма Земли не совпадает с известными геометрическими фигурами. Эта фигура описывается по некоторой усредняющей поверхности и носит название «геоид». Последний близок к эллипсоиду вращения с полуосями

R экват. = 6 378 км и R полярн. = 6357 км (разница в 21км).

Площадь суши составляет 29,2% поверхности планеты, а вода 70,8%. Средняя высота континентов 800м над уровнем моря, а средняя глубина океанов 4,8км.

Объём Земли - около 1000 000 000 000 (триллион) куб. км.

Пользуясь законом всемирного тяготения рассчитали массу Земли (6 х 1021т) и, следовательно, средняя плотность вещества планеты составляет 5,52 г/куб. см, хотя плотность вещества земной коры лишь 2, 8 г/куб. см.

Земля вращается вокруг Солнца с периодом в 1 год и вокруг своей оси вращения с периодом в 24 ч. Место пересечения оси вращения с поверхностью Земли называют её географическими полюсами. Геометрическое место точек на поверхности Земли, равноудалённых от полюсов называется экватором.

Величина силы тяжести на поверхности Земли: F= j mхmз/Rз2 зависит:

· от широты места из-за компенсирующего действия центробежной силы (и поэтому уменьшается у экватора),

· от широты места из-за увеличения Rз (и поэтому также уменьшается у экватора),

· от высоту над уровнем моря из-за увеличения Rз (и поэтому уменьшается в горах).

Аномалии силы тяжести – гравитационные аномалии – характерны для участков с менее или более плотными горными породами, например, содержащими тяжелые минералы или, напротив, залежи с относительно лёгкими углесодородами – нефтью или газом, что используется в поисковых целях.

Магнитное поле Земли имеет свои полюса, не совпадающие с географическими. Угол между направлениями на магнитный и соответствующий географический полюс называется магнитным склонением. Напряжённость магнитного поля максимальна у полюсов и минимальна на магнитном экваторе. Аномалии магнитного поля наблюдаются над породами, содержащими магнитные минералы, особенно – магнетит, что используется при поисках месторождений железа, алмазосодержащих пород – кимберлитов и т.д.

Гравитационные процессы и природная радиоактивность в недрах Земли вызывают разогрев пород на глубине. В верхней части вещество планеты на 1км глубины оказывается прогретым в среднем на 30о (термоградиент равен 30о). То есть на глубине 10 км – 300оС, 100 км – 3000оС. Однако в центре Земли температура равна 4000оС. Термоградиент вразных регионах колеблется от 5 до 2000оС: он меньше в стабильных зонах (на щитах) и больше в горных и вулканических зонах (на Украинском щите – 8о, в Карпатах – 36о, на Камчатке – 150 – 200оС).

При изучении строения Земли выделяют ее внешние (атмосфера, гидросфера, биосфера) и внутренние (земная кора, мантия, внешнее и внутреннее ядро) оболочки. Земную кору и непосредственно к ней примыкающую часть верхней мантии объединяют в так называемую литосферу - "каменную оболочку". Выделяют также континентальную и океаническую коры, отличающиеся составом пород и толщиной. Внутреннее строение Земли изучают, исследуя прохождение и отражение искусственных или природных сейсмических (ударных) в недрах. На границах мантии, внешнего и внутреннего ядра, которые отличаются физическими свойствами и составом вещества, происходит скачкообразное изменение скоростей сейсмических волн.

Граница раздела коры и верхней мантии – граница Мохоровичича. Под ней находится, вероятно – жидкая зона – астеносфера. Вещество мантии похоже на каменные метеориты, а вещество ядра – на железные, причём вещество внешнего ядра – жидкое, а внутреннего – твёрдое вследствие чудовищного давления.

Переходя к общему обзору глобальных геологических структур, необходимо отметить, что наиболее крупными частями земной коры являются подвижные литосферные плиты, несущие на себе континенты и океаны и отделенные друг от друга рифтами - мощными и протяженными зонами глубинных разломов, уходящих в астеносферу. Границы плит являются зонами максимальной тектонической, сейсмической и вулканической активности. Литосферные плиты, двигаясь по астеносфере, расходятся в осевых зонах срединно-океанических хребтов (здесь происходит разрастание коры за счет поступления из мантии магмы) и сходятся по периферии океанов (здесь одна плита пододвигается под другую). Причиной перемещения литосферных плит считают тепловую конвекцию в мантии. В пределах литосферных плит выделяются геосинклинально-складчатые области, имеющие сложное геологическое строение, и платформы, нижняя часть которых представляет собой складчатый геосинклинальный фундамент, на котором относительно спокойно залегают породы (преимущественно осадочные) платформенного чехла.

В составе земной коры наиболее распространены химические элементы (вес. %):

1. кислород – 46, 6

2. кремний – 27,7

3. алюминий – 8,1

4. железо – 5,0

5. кальций - 3,6

6. натрий – 2,8

7. калий – 2,6

8. магний - 2,1 (в сумме – 98,5%),

входящие в состав различных породообразующих минералов, в основном силикатов и алюмосиликатов. Средние содержания элементов, рассчитанные геохимическими приёмами, именуют кларками химических элементов.

Атмосфера Земли состоит в основном из азота, кислорода и относительно небольшого количества СО2. На других планетах её гораздо больше – на Земле она благодаря фотосинтезу в растениях и связыванию в карбонатах океанских осадков. Вероятно, атмосфера – реликт первичной газово – пылевой туманности.

 

Раздел 3. Общие понятия об эндогенных и экзогенных геологических процессах

 

Геологические процессы непрерывно протекают как на поверхности Земли, так и внутри ее, разрушая или изменяя одни породы и создавая другие, формируя рельеф поверхности Земли и структуры земной коры. Существует разница между эндогенными процессами (тектоногенез, магматизм, метаморфизм), определяемыми глубинными факторами, и экзогенными (выветривание, денудация, транспортировка, осадконакопление), действующими на поверхности Земли.

Схема.

Эндогенные процессы связаны с развитием материи в недрах Земли, а экзогенные- с взаимодействием земной коры с внешними оболочками Земли и через них с космосом. Эндогенные и экзогенные процессы тесно связаны между собой и взаимно обусловлены; о результатах геологических процессов нередко судят по образованию характерных пород и руд, по особенностям сформировавшихся геологических структур, т.е. строению того или иного участка земной коры.

 

Раздел 4. Основы кристаллографии и минералогии

Кристаллография

 

Кристаллография - наука о кристаллах. Она изучает их внешнюю форму, внутреннее строение (структуру), физико-химические свойства, происхождение. Современная кристаллография включает следующие основные разделы:

· морфология кристаллов (геометрическая кристаллография),

· кристаллохимия (структурная кристаллография),

· кристаллофизика,

· кристаллогенезис (рост кристаллов).

Кристаллическими называются твердые вещества, построенные из материальных частиц - ионов, атомов или молекул, геометрически правильно расположенных в пространстве. Для описания порядка расположения частиц в пространстве их стали отождествлять с точками. Из такого подхода постепенно сформировалось представление о пространственной или кристаллической решетке как о бесконечном трехмерном периодическом образовании. В ней выделяют узлы (отдельные точки, центры тяжести атомов и ионов), ряды (ряд - совокупнось узлов, лежащих на одной прямой) и плоские сетки (плоскости проходящие через любые три узла). Таким образом, кристаллическое вещество имеет строго закономерное (решетчатое или ретикулярное) внутреннее строение (от лат. reticulum - сеточка). При благоприятных условиях они могут самоограняться, образуя правильные геометрические многогранники - кристаллы.

Геометрически правильная форма кристаллов обусловливается прежде всего их строго закономерным внутренним строением. Сетки кристаллической решетки соответствуют граням реального кристалла, места пересечения сеток - ряды - ребрам кристаллов, а места пересечения ребер - вершинам кристаллов.

Аморфными называются твердые тела, в которых частицы располагаются в пространстве беспорядочно. Иногда их называют минералоидами.

Все кристаллы обладают рядом основных специфических свойств, отличающих их от некристаллических аморфных тел. Такими свойствами являются:

· однородность строения - одинаковость узора взаимного расположения атомов во всех частях объема его кристаллической решетки,

· анизотропность - различие физических свойств кристаллов (теплопроводность, твердость, упругость и другие) по параллельным и непараллельным направлениям кристаллической решетки. Свойства одинаковы по параллельным направлениям, но неодинаковы по непараллельным направлениям. В противоположность анизотропным, изотропные тела имеют одинаковые свойства во всех направлениях,

· способность самоограняться. Этим свойством - принимать многогранную форму в результате свободного роста в подходящей среде - обладают только кристаллических вещества,

· симметричность - это закономерная повторяемость в расположении предметов или их частей на плоскости или в пространстве. Симметрия кристаллов соответствует симметрии их пространственных решеток. Каждый кристалл может быть совмещен сам с собой определенными преобразованиями (поворотами или отражениями), которые называются симметрическими.

 

Изучение кристаллов начинается с рассмотрения их внешней формы. Внешняя форма хорошо сформированных кристаллических многогранников может быть описана с помощью элементов симметрии. Симметричным считается объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами или (и) отражениями в зеркальной плоскости. Элементы симметрии - это вспомогательные геометрические образы (плоскости, прямые линии, точки), с помощью которых обнаруживается симметрия фигур.

Рассмотрим элементы симметрии. Плоскость симметрии - это воображаемая плоскость, которая делит фигуру на две равные части так, что одна из частей является зеркальным отражением другой. Плоскость симметрии обозначается буквой Р. Если плоскостей симметрии в данном кристалле несколько, то перед обозначением плоскости ставится их число. Например 3Р (три плоскости симметрии имеет спичечная коробка). В кристаллах может быть одна, две, три, четыре, пять, шесть, семь и девять плоскостей симметрии. Теоретически можно доказать, что восьми и более девяти плоскостей симметрии в кристаллах быть не может Многие кристаллы вообще не имеют ни одной плоскости симметрии.

Ось симметрии - воображаемая прямая линия, при повороте вокруг которой всегда на один и тот же угол происходит совмещение равных частей фигуры. Наименьший угол поворота вокруг оси, приводящий к такому совмещению, называется элементарным углом поворота оси симметрии a.его величина определяет порядок оси симметрии n, который равен числу самосовмещений при полном повороте фигуры на 360o (n = 360/a). Оси симметрии обозначаются буквой L с цифровым индексом, указывающим на порядок оси - Ln. Доказано, что в кристаллах возможны только оси второго, третьего, четвертого и шестого порядков. Они обозначаются L2, L3, L4, L6. Осей пятого и порядка выше шестого в кристаллах не бывает. Оси третьего L3, четвертого L4 и шестого L6 порядка принято считать осями высшего порядка.

Центр симметрии (центр инверсии) - это такая точка внутри фигуры при проведении через которую любая прямая встретит на равном от нее расстоянии одинаковые и обратно расположенные части фигуры. Центр симметрии обозначается буквой С. Если каждая грань кристалла имеет себе равную и параллельную или обратно параллельную, то данный кристалл обладает центром симметрии. Некоторые кристаллы могут не иметь центра симметрии.

Перечень всех элементов симметрии кристалла, записанный в виде их символов, называется формулой симметрии или видом симметрии.

Cтрогий математический анализ (Гессель, 1830, Гадолин, 1867) показал, что существует всего 32 вида симметрии. Это все возможные для кристаллов комбинации элементов симметрии. 32 вида симметрии объединяются в сингонии. Всего различают семь сингоний. Название "сингония" происходит от греческого " син" - "сходно" и "гон" - "угол". Сингонию кристалла определяют по обязательным и сходным для каждой сингонии элементам симметрии. 7 сингоний объединены в три категории.

Низшая категория объединяет триклинную,моноклинную и ромбическую сингонии. Кристаллы этих сингоний не имеют осей симметрии выше второго порядка.

Средняя категория объединяет тригональную, тетрагональную и гексагональную сингонии. Кристаллы этих сингоний имеют только одну ось симметрии высшего порядка.

Высшая категория - кубическая сингония - объединяет кристаллы, которые обязательно имеют 4L3 (Табл. 1).

Таблица 1.

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...