Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Объемные гидравлические двигатели

Гидравлические машины и передачи

План лекции

4.2. Объемные гидроприводы

4.2.1. Объемные гидравлические двигатели

4.2.1.1. Гидроцилиндры

4.2.1.2. Гидромоторы

Объемные гидроприводы

Объемный гидропривод (ГОСТ 17752-81) – это гидропривод, в котором используются объемные гидромашины.

Принцип действия объемного гидропривода основан на практической несжимаемости рабочей жидкости и на свойстве жидкости передавать давление по всем направлениям в соответствии с законом Паскаля.

Рассмотрим работу простейшего объемного гидропривода, принципиальная схема которого приведена на рис. 4.7.

Рис. 4.7. Принципиальная схема простейшего объемного гидропривода

Простейший объемный гидропривод состоит из двух гидроцилиндров 1 и 2, расположенных вертикально. Нижние полости в них заполнены жидкостью и соединены трубопроводом.

Пусть поршень гидроцилиндра 1, имеющий площадь S1, под действием внешней силы F1 перемещается вниз с некоторой скоростью V1. При этом в жидкости создается давление р = F1/S1. Если пренебречь потерями давления на движение жидкости в трубопроводе, то это давление передается жидкостью по закону Паскаля в гидроцилиндр 2 и на его поршне, имеющем площадь S2, создает силу, преодолевающую внешнюю нагрузку

F2 = р S2.

Считая жидкость несжимаемой, можно утверждать, что количество жидкости, вытесняемое поршнем гидроцилиндра 1 в единицу времени (расход Q = V1 S1), поступает по трубопроводу в гидроцилиндр 2, поршень которой перемещается со скоростью V2 = Q/S2. направленной вертикально вверх (против внешней нагрузки F2).

Таким образом, если пренебречь потерями энергии в элементах гидропривода, то можно проследить следующее. Механическая мощность N1 = F1V1, затрачиваемая внешним источником на перемещение поршня гидроцилиндра 1, воспринимается жидкостью, передается ею по трубопроводу и в гидроцилиндре 2 совершает полезную работу в единицу времени против внешней силы F2 со скоростью V2 (реализуется мощность N2 = F2∙V2). Этот процесс можно представить в виде следующего уравнения мощности:

N1 = F1V1 = pS1V1 = pQ = pS2V2 = F2V2 = N2.

Таким образом, гидроцилиндр 1 в рассмотренном случае работает в режиме насоса, т.е. преобразует механическую энергию привода в энергию потока рабочей жидкости, а гидроцилиндр 2 совершает обратное действие, а именно: преобразует энергию потока жидкости в механическую работу, т. е. выполняет функцию гидродвигателя.

По виду источника энергии жидкости объемные гидроприводы делятся на три типа.

Насосный гидропривод: источником энергии жидкости является объемный насос, входящий в состав гидропривода. При анализе работы такого гидропривода в это понятие также включают и приводящий насос-двигатель. По характеру циркуляции рабочей жидкости насосные гидроприводы разделяют на гидроприводы с разомкнутой циркуляцией жидкости (рис. 4.8) (жидкость от гидродвигателя поступает в гидробак, откуда всасывается насосом) и гидроприводы с замкнутой циркуляцией жидкости (рис. 4.9) (жидкость от гидродвигателя поступает сразу во всасывающую гидролинию насоса).

Аккумуляторный гидропривод: источником энергии жидкости является предварительно заряженный гидроаккумулятор. Такие гидроприводы используются в гидросистемах с кратковременным рабочим циклом или с ограниченным числом циклов (например, гидропривод рулей ракеты).

Магистральный гидропривод: рабочая жидкость поступает в гидросистему из централизованной гидравлической магистрали с определенным располагаемым напором (энергией).

Выходным звеном гидропривода считается выходное звено гидродвигателя, совершающее полезную работу.

По характеру движения выходного звена различают объемные гидроприводы:

– поступательного движения (рис. 4.8, а). В них выходное звено совершает возвратно-поступательное движение. В качестве гидродвигателя используется объемный гидродвигатель возвратно-поступательного движения (гидроцилиндр);

– поворотного движения (рис. 4.8, б). В них выходное звено совершает ограниченное по величине возвратно-поворотное движение. В качестве гидродвигателя используется объемный гидродвигатель поворотного движения (поворотный гидромотор);

– вращательного движения (рис. 4.8, в). В них выходное звено совершает вращательное движение. В качестве гидродвигателя используется объемный гидродвигатель вращательного движения (гидромотор).

Если в гидроприводе имеется возможность изменять только направление движения выходного звена, то такой гидропривод называется нерегулируемым.

Если же в гидроприводе имеется возможность изменять скорость выходного звена извне по заданному закону, как по направлению, так и по величине, то такой гидропривод называется регулируемым.

На практике используют два основных способа регулирования величины скорости движения выходного звена объемного гидропривода:

– дроссельное регулирование. Регулирование скорости осуществляется регулирующим гидроаппаратом за счет изменения количества рабочей жидкости, поступающей в гидродвигатель. При этом часть потока рабочей жидкости, поступающей от насоса, отводится на слив, минуя гидродвигатель;

– объемное (машинное) регулирование. Регулирование скорости осуществляется регулируемым насосом или регулируемым гидромотором, или обеими объемными гидромашинами с регулируемым рабочим объемом.

Если в объемном гидроприводе регулирование скорости выходного звена происходит одновременно двумя вышеперечисленными способами, то такой способ регулирования называется объемно-дроссельным, или ма-шиннодроссельным.

В некоторых случаях в насосном гидроприводе скорость движения выходного звена регулируется за счет изменения частоты вращения приводящего двигателя (электродвигателя, двигателя внутреннего сгорания и т.п.). Такой гидропривод называется гидроприводом с управлением приводящим двигателем.

Регулирование гидропривода может быть ручным, автоматическим и программным.

Объемный гидропривод, в котором в определенном диапазоне изменения внешних воздействий скорость движения выходного звена путем регулирования поддерживается постоянной, называется стабилизированным.

Объемный гидропривод, в котором перемещение выходного звена находится в строгом соответствии с величиной управляющего сигнала, называется следящим гидроприводом.

Примерами гидроприводов различного назначения являются гидроприводы, схемы которых представлены на рис. 4.8 и 4.9.

На рис. 4.8 приведены три принципиальные схемы, соответствующие трем классам гидроприводов, которые различаются характером движения выходного звена. На схемах использованы следующие обозначения: 1 – регулируемый насос, 2 – гидродвигатель (на схеме а им является гидроцилиндр, на схеме б – поворотный гидродвигатель и на схеме в – гидромотор), 3 – гидрораспределитель (на схеме а – двухпозиционный с управлением от кулачка и с пружинным возвратом, на схеме б – трехпозиционный с управлением от электромагнитов и на схеме в – трехпозиционный с ручным управлением), 4 – предохранительный гидроклапан, 5 – гидробак.

Насос всасывает жидкость из бака и нагнетает ее в гидродвигатель через гидрораспределитель. Из гидродвигателя жидкость сливается в гидробак через другой канал гидрораспределителя. Предохранительный гидроклапан отрегулирован на предельно допустимое давление в гидросистеме и предохраняет гидропривод с приводящим двигателем от перегрузок.

Для улучшения условий всасывания жидкости из бака и предотвращения кавитации в насосе в гидроприводе вращательного движения (рис. 4.8, в) применен гидробак с наддувом, т.е. с повышенным давлением газа над поверхностью жидкости. При необходимости, это обычно обеспечивается при помощи специального компрессора.

Рис. 4.8. Принципиальные схемы гидроприводов с разомкнутой циркуляцией: а) возвратно-поступательного движения; б) поворотного движения; в) вращательного движения

 

Изменение направления движения выходного звена гидродвигателя (реверсирование) осуществляется изменением позиции гидрораспределителя, а регулирование скорости этого движения – увеличением или уменьшением рабочего объема насоса.

На рис. 4.8 показаны принципиальные схемы гидроприводов с разомкнутой циркуляцией жидкости. Разрыв циркуляции происходит в баке, при этом исключается возможность реверсирования гидродвигателей путем изменения направления подачи насоса (реверса подачи). В таких гидроприводах для реверсирования гидродвигателя обязательно использовать гидрораспределители.

На рис. 4.9 показана схема гидропривода вращательного движения с замкнутой циркуляцией жидкости.

Рис. 4.9. Принципиальная схема гидропривода с замкнутой циркуляцией

 

На схеме изображены регулируемый насос 1 с реверсом подачи; регулируемый гидромотор 2 с реверсом вращения; предохранительные гидроклапаны 3, защищающие гидролинии и от чрезмерно высоких давлений (каждая из них может оказаться напорной); система подпитки, состоящая из вспомогательного насоса 4, переливного клапана 5 и двух обратных клапанов 6. Система подпитки предохраняет гидролинии и от чрезмерно низких давлений (система подпитки прежде всего служит для исключения возможности возникновения кавитации на входе в насосе).

На основании анализа приведенных принципиальных схем объемных гидроприводов, а также принимая во внимание задачи, которые необходимо решать по управлению гидроприводом и обеспечению его работоспособности, можно заключить, что реальный объемный гидропривод обязательно должен включать в себя следующие элементы (количество перечисленных ниже элементов в составе гидропривода не ограничивается):

– энергопреобразователи - это устройства, обеспечивающие преобразование механической энергии в гидроприводе. К ним относятся: гидромашины (насосы и гидродвигатели), гидроаккумуляторы и гидропреобразователи.

– гидросеть – это совокупность устройств, обеспечивающих гидравлическую связь элементов гидропривода. К ним относятся: гидробаки, рабочая жидкость, гидролинии, гидравлическая соединительная арматура.

– кондиционеры рабочей среды – это устройства, предназначенные для поддержания заданных качественных показателей и состояния рабочей жидкости (чистота, температура и т.п.). К ним относятся: фильтры, сепараторы, теплообменники и воздухоспускные устройства (частично к этому классу устройств относятся и гидробаки, где также происходит очистка и охлаждение рабочей жидкости);

– гидроаппараты – это устройства, предназначенные для изменения или поддержания заданных значений параметров потока рабочей жидкости (давления, расхода, направления движения). Их еще называют элементами управления объемных гидроприводов. К ним относятся: гидродроссели, гидроклапаны и гидрораспределители.

 

Объемные гидравлические двигатели

В гидравлических двигателях происходит преобразование энергии потока жидкости в механическую работу. В объемных гидродвигателях это преобразование осуществляется в замкнутых объемах (рабочих камерах), которые попеременно сообщаются с напорной и сливной полостями. Гидродвигатель – это гидромашина, «противоположная» насосу. К нему подводится жидкость под давлением, а на выходе имеет место возвратно-поступательное или вращательное движения выходного звена.

По характеру движения выходного звена во всём многообразии объемных гидродвигателей выделяют две большие группы: гидравлические цилиндры (гидроцилиндры) и гидравлические моторы (гидромоторы).

 

Гидроцилиндры

Гидравлическим цилиндром называется объемный гидродвигатель с возвратно-поступательным движением выходного звена. Гидроцилиндры широко применяются в качестве исполнительных механизмов различных машин. По конструкции и принципу действия гидроцилиндры очень разнообразны и классифицируются в соответствии с ГОСТ 17752-81.

По направлению действия рабочей жидкости все гидроцилиндры можно разделить на две группы: одностороннего и двухстороннего действия. На рабочий орган гидроцилиндра одностороннего действия жидкость может оказывать давление только с одной стороны, как, например, в схемах на рис. 4.10, а, г.

Рис. 4.10. Разновидности гидроцилиндров: а) поршневой одностороннего действия; б) поршневой двухстороннего действия; в)поршневой двухстороннего действия с двухсторонним штоком; г) плунжерный; д) телескопический одностороннего действия

 

В гидроцилиндрах одностороннего действия движение поршня вправо обеспечивается за счет давления жидкости, подводимой в левую полость гидроцилиндра. Обратное перемещение поршня обеспечивается другим способом. Наиболее часто это достигается за счет пружины (рис. 4.10, a) или веса груза при вертикальном движении поршня (рис. 4.10, д). Перемещение рабочего органа гидроцилиндра двухсторонне­го действия в обоих направлениях обеспечивается за счет рабочей жидкости (рис. 4.10, б, е). В таких гидроцилиндрах жидкость может подводиться как в левую полость (тогда поршень движется вправо), так и в правую для обеспечения движения влево.

Гидроцилиндры подразделяются также по конструкции рабочего органа. Наибольшее распространение получили цилиндры с рабочим органом в виде поршня или плунжера. Причем поршневые гидроцилиндры могут быть выполнены с односторонним (рис. 4.10, д) или двухсторонним штоком (4.10, в). Плунжерные гидроцилиндры (рис. 4.10, г) могут быть только одностороннего действия, с односторонним штоком.

По характеру хода выходного звена гидроцилиндры делятся на одноступенчатые и телескопические (многоступенчатые). Одноступенчатые гидроцилиндры рассмотрены ранее (рис. 4.10, а, б, е, г). Телескопические гидроцилиндры представляют собой несколько вставленных друг в друга поршней. В качестве примера на рис. 4.10, г приведена схема двухступенчатого телескопического гидроцилиндра одностороннего действия. В таком гидроцилиндре поршни выдвигаются последовательно друг за другом. Телескопические гидроцилиндры применяются для получения больших перемещений.

Полный КПД гидроцилиндров определяется в первую очередь величиной механического КПД, который для большинства конструкций составляет м = 0,85 – 0,95. Гидравлические потери в цилиндрах практически отсутствуют и гидравлический КПД равен единице ( г = 1). Объемные потери в рассматриваемых устройствах могут иметь место в зазоре между поршнем и цилиндром. Однако при уплотнении этого места резиновыми кольцами или манжетами они очень малы. Тогда объемный КПД также можно считать равным единице ( о = 1).

При расчете гидроцилиндров используются две основные формулы. Первая из них связывает силу F на штоке (рис. 4.11) и перепад давлений на гидроцилиндре р = р1 – р2. С некоторым упрощением она выглядит следующим образом:

F = р ∙ S ∙ м

где S – активная площадь, на которую действует подводимое (высокое) давление.

Рис. 4.11. Расчетная схема гидроцилиндра

При движении жидкости по сплошным стрелкам на расчетной схеме (рис. 4.11) этой площадью является площадь поршня (S = Sn), а при обратном движении (движение по штриховым стрелкам на схеме) – площадь поршня за вычетом площади штока (S = Sn – Sш).

Вторая формула связывает расход и скорость поршня

.

или

Формула записана в двух вариантах. Это вызвано тем, что расходы до гидроцилиндра и после него различны. Для пояснения этого представим, что поршень на расчетной схеме (рис. 4.11) переместился из начального положения вправо на расстояние (равное толщине поршня). В таком случае в левую полость гидроцилиндра поступил объем жидкости, равный объему поршня (W = Sпl), а из правой полости вытеснился меньший объем W = (Sn – Sш) (W¢ на рис 4.11 заштрихован). Из соотношения объемов W и W¢ следует, что расходы до и после гидроцилиндра связаны зависимостью

.

Это соотношение следует учитывать при проведении расчетов.

Для обозначения гидроцилиндров на гидравлических схемах используются условные обозначения, приведенные на рис. 4.10.

 

Гидромоторы

Гидромотором называется объемный гидравлический двигатель с вращательным движением выходного звена. Наибольшее распространение получили роторные гидромоторы. Их конструкции ничем принципиально не отличаются от конструкций одноименных роторных насосов. Некоторые конструктивные отличия обычно вызваны обратным направлением потока мощности через гидромотор (по сравнению с насосом).

Распространение получили шестеренные, пластинчатые и роторно-поршневые гидромоторы. Их конструктивные схемы также не отличаются от конструктивных схем аналогичных насосов. При рассмотрении этих схем применительно к гидромоторам необходимо учитывать, что мощность к гидродвигателю подводится с потоком жидкости, В гидромоторе она преобразуется во вращательное движение, а затем реализуется в виде крутящего момента на его выходном валу.

Наиболее широко используются роторно-поршневые гидромоторы. При этом аксиально-поршневые применяются в случае необходимости получения на выходе высоких скоростей вращения, а радиально-поршневые гидромоторы – для получения низких скоростей вращения (в частности, используются в мотор-колесах самоходных машин).

Основной характеристикой геометрических размеров роторных гидромоторов, как и роторных насосов, является их рабочий объем W0. Эта величина имеет тот же физический смысл и определяется так же, как и у насосов. Гидромоторы и аналогичные им насосы могут быть с переменным рабочим объемом, т.е. регулируемыми.

Полные КПД роторных гидромоторов определяются произведением объемного и механического КПД. Гидравлические потери в этих гидромоторах малы, поэтому их гидравлические КПД принимают равными единице ( г = 1). Численные значения объемных о и механических м КПД роторных гидромашин практически не отличаются от аналогичных величин для однотипных насосов.

При расчете гидромоторов используются две основные формулы. Они несколько отличаются от аналогичных формул для роторных насосов из-за противоположного направления потока мощности. Первая из этих формул связывает момент на валу гидромотора с перепадом давлений в напорном и сливном трубопроводах р =p1 –р2:

.

Вторая формула связывает расход Q через гидромотор с частотой вращения его вала n:

Для обозначения гидромоторов на принципиальных гидравлических схемах используется та же система символов, что для обозначения роторных насосов. Но в отличие от насосов у гидромоторов стрелки (треугольники) внутри окружностей, указывающие направление движения жидкости, всегда направлены внутрь окружности. Символ регулируемых гидромоторов также перечеркивается тонкой стрелкой.

Существуют роторные гидромашины, которые могут работать как в режиме насоса, так и в режиме гидромотора. Такие гидромашины принято называть насос-моторами. Обозначения перечисленных элементов приведены на рис. 4.12.

Рис. 4.12. Обозначения роторных гидромоторов и насос-моторов

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...