Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Электромеханические измерительные приборы.

Устройство электромеханических приборов

Электромеханические измерительные приборы (ЭИП) отличаются простотой, дешевизной, высокой надежностью, разнообразием применения, относительно высокой точностью.

Любой ЭИП состоит из ряда функциональных преобразователей, каждый из которых решает свою элементарную задачу в цепи преобразований. Так, самый простейший измерительный электромеханический прибор прямого преобразования (вольтметр, амперметр) состоит из трех основных преобразователей: измерительной цепи (ИЦ), измерительного механизма (ИМ) и отсчетного устройства (ОУ) (рис. 1).

 

Рис.1

Измерительная цепь обеспечивает преобразование электрической измеряемой величины X в промежуточную электрическую величину Y (ток или напряжение), функционально связанную с измеряемой величиной и непосредственно воздействующую на измерительный механизм.

Измерительный механизм является электромеханическим преобразователем, осуществляющим преобразование электрической величины Y в наглядное аналоговое показание а. На магнитном воздействии электрического тока основаны магнитоэлектрический, электромагнитный, индукционный, электродинамический и вибрационный измерительные механизмы. Тепловое воздействие электрического тока используют биметаллический и тепловой измерительные механизмы. На взаимодействии заряженных электродов, находящихся под напряжением, основан принцип работы электростатического измерительного механизма.

Отсчетное устройство состоит из указателя, жестко связанного с подвижной частью ИМ, и неподвижной шкалы. Указатели бывают стрелочные (механические) и световые. Шкала — это совокупность отметок в виде штрихов, расположенных вдоль линии, по которым определяют числовое значение измеряемой величины. Шкалы градуируют в единицах измеряемой величины — именованная шкала — либо в делениях — неименованная шкала.

В общем случае на подвижную часть ИМ при ее движении воздействуют моменты: вращающий Мвр, противодействующий Мщ и успокоения Мусп.

Виды электромеханических измерительных механизмов.

Магнитоэлектрические приборы приборы (МЭП) состоят из измерительной цепи, измерительного механизма и отсчетного устройства (см. рис. 1). Конструктивно измерительный механизм может быть выполнен либо с подвижным магнитом, либо с подвижной катушкой. На рис.2 показана конструкция прибора с подвижной катушкой. Постоянный магнит 1,магнитопровод с полюсными наконечниками 2 и неподвижный сердечник 3 составляют магнитную систему механизма. В зазоре с полюсными наконечниками и сердечником создается сильное равномерное радиальное магнитное поле, в котором находится подвижная прямоугольная катушка 4, намотанная медным или алюминиевым проводом на алюминиевом каркасе (применяются и бескаркасные рамки). Катушка (рамка) 4 может поворачиваться в зазоре на полуосях 5 и 6. Спиральные пружины 7 и 8 создают противодействующий момент и используются для подачи измеряемого тока от выходных зажимов прибора в рамку (механические и электрические соединения на рис.2 не показаны), рамка жестко соединена со стрелкой 9. Для балансировки подвижной части имеются передвижные грузики 10. Запас электромагнитной энергии в контуре с током I, находятся в поле постоянного магнита, выражается формулой:

WМ =Iy

WМ — полное потокосцепление данного контура с магнитным полем постоянного магнита.

 

Рис. 2. Схема устройства магнитоэлектрического прибора

Достоинства: высокий класс точности — 0,05 и ниже, равномерная шкала, высокая и стабильная чувствительность, малое собственное потребление мощности, большой диапазон измерений, на показания МЭП не влияют внешние магнитные и электрические поля.

Недостатки: без преобразователей МЭП используют только в цепях постоянного тока, имеют малую нагрузочную способность, сложны и дороги, на их показания влияют колебания температуры.

Применение: магнитоэлектрические ИМ используют в амперметрах, вольтметрах, омметрах и гальванометрах (обычных, баллистических и вибрационных).

1. Амперметры. Магнитоэлектрический измерительный механизм, включенный в электрическую цепь последовательно с нагрузкой, позволяет измерять токи порядка 20... 50 мА. Для расширения пределов измерения используют шунты (манганиновый резистор), сопротивление которых мало зависит от температуры. Сопротивление шунта Rm меньше сопротивления прибора Rnp.

 

2. Вольтметры. Магнитоэлектрический измерительный механизм, включенный параллельно нагрузке. Для расширения пределов измерения по напряжению последовательно с ИМ включают добавочный резистор Rдоб, сопротивление которого больше сопротивления Rnp:

Rдоб = Rпр(m-1)

где m — коэффициент шунтирования по напряжению, m = U/ Unp.

3. Логометры. Приборы электромеханической группы, измеряющие отношение двух электрических величин, обычно двух токов a =f(I1/I2), что позволяет сделать их показания независимыми в известных пределах от напряжения источника питания.

В логометрах вращающий и противодействующий моменты создаются электрическим путем и направлены навстречу друг другу.

4. Омметры. Магнитоэлектрические логометры широко применяются в приборах для измерения сопротивления — омметрах и мегомметрах, в выпрямительных частотомерах и устройствах для измерения неэлектрических величин (температуры, давления, уровня жидкости и др.).

Электромагнитные измерительные приборы. В электромагнитных измерительных приборах (ЭМИП) для перемещения подвижной части используется энергия магнитного поля системы состоящей из катушки с измеряемым током и одного или нескольких сердечников, выполненных из ферромагнитных материалов. Получили распространение три конструкции ЭМИП: с плоской катушкой; с круглой катушкой; с замкнутым магнитопроводом. В ЭМИП с плоской катушкой сердечник из пермаллоя под действием сил поля втягивается в узкий воздушный зазор катушки с обмоткой из медного провода. Ось сердечника со стрелкой, спиральной пружиной и подвижной частью успокоителя крепится на опорах или растяжках. Успокоители в ЭМИП могут быть воздушные, жидкостные или магнитоиндукционные.

Уравнение преобразования для ЭМИП:

Электродинамические измерительные приборы. В электродинамических измерительных приборах (ЭДИП) для перемещения подвижной части используется энергия системы, состоящей из подвижной и неподвижной рамок с токами. Неподвижная часть может: иметь одну, чаще две катушки, соединенные между собой параллельно или последовательно, намотанные медным проводом, внутри которых располагается подвижная катушка, обычно каркасная. Для ее включения в цепь измеряемого тока используются пружинки или растяжки. Успокоение подвижной части — воздушное или магнитоиндукционное (рис. 3). Внутри неподвижной катушки 1 вращается укрепленная на оси подвижная катушка 2. Ток к ней подводится по спиральным токопроводящим пружинам, служащим одновременно для создания противодействующего момента. Электромагнитная энергия системы двух катушек с токами I1 и I2

Рис. 3. Схема устройства электродинамического прибора

Ферродинамические измерительные приборы (ФДП) отличаются от ЭДИП тем, что неподвижная катушка расположена на сердечнике из ферромагнитного материала. Это приводит к значительному увеличению Мвр и уменьшению влияния внешних магнитных полей. Однако наличие магнитопровода снижает точность этих приборов за счет наличия потерь на гистерезис и вихревые токи.

 

Достоинства: не боятся вибраций и тряски, внешние магнитные поля мало влияют на их показания, классы точности 0,2;, 1,0; 1,5; 2,5. Успокоение подвижной части — воздушное и магнитоиндукционное.

 

Недостатки: на постоянном токе погрешность возрастает за счет потерь на гистерезис, сказывается влияние частоты питающего напряжения и температуры внешней среды; частотный диапазон 10 Гц... 1,5 кГц,

 

Применение: в основном используют в цепях переменного тока на промышленной частоте в качестве амперметров, вольтметров, ваттметров, большая величина Мвр позволяет использовать их в самописцах, расширение пределов измерения осуществляется так же, как у электродинамических приборов.

Электростатические измерительные приборы. В электростатических измерительных приборах (ЭСИП) для перемещения подвижной части используется принцип взаимодействия двух или нескольких электрически заряженных проводников, т. е. здесь в отличие от механизмов других систем перемещение подвижной части осуществляется за счет непосредственного приложенного напряжения, таким образом, эти приборы по своему принципу действия являются приборами, измеряющими только напряжение. Конструктивно электростатические ИП можно представить в виде плоского конденсатора с подвижными и неподвижными электродами, перемещение подвижной части связано с изменением емкости системы, которая может быть осуществлена либо изменением площади электродов, либо изменением расстояния между ними. На рис. 3 приведена схема устройства электростатического прибора.

 

 

Рис. 3. Схема устройства электростатического прибора

1- подвижная пластина; 2 — неподвижные пластины; 3 — ось

Подвижная алюминиевая пластина 1, закрепленная вместе стрелкой на оси 3, может перемещаться, взаимодействуя с двумя электрически соединенными неподвижными пластинами 2. Входное напряжение подается на подвижную и неподвижную пластины. Под действием электростатических сил подвижная пластина втягивается между неподвижными пластинами.

Достоинства: не потребляют энергии в цепях постоянного тока и очень незначительное потребление в цепях переменного тока, классы точности: 0,05; 0,1; 1,0; 1,5; 2,5; частотный диапазон 20 Гц... 10 МГц; диапазон измерений постоянного напряжения от 10 В до 7500 кВ, переменного напряжения от 30 В до 7500 кВ, независимость показаний от изменения температуры, частоты и формы кривой измеряемого напряжения, а также внешних магнитных полей.

Недостатки: низкая чувствительность, неравномерная шкала, сказывается влияние внешних электрических и электростатических полей.

Применение: электростатические измерительные приборы используют в цепях постоянного и переменного токов в качестве вольтметров. Для расширения пределов измерения по напряжению используются резисторные и емкостные делители напряжения.

Индукционные измерительные приборы. В индукционных измерительных приборах (ИИП) особым положением катушек получают вращающееся электромагнитное поле, которое, пронизывая алюминиевый цилиндр, индуцирует в нем вихревые токи, что вызывает возникновение вращающего момента. С помощью спиральных бестоковых пружин создается противодействующий момент и обеспечивается пропорциональность измеряемой величины отклонению подвижной системы.

Зависимость показаний ИИП от колебаний частоты тока возбуждения и температуры окружающей среды ограничивает применение этих приборов.

Индукционный измерительный механизм используется в самопишущих приборах, для построения указателя вращающегося поля, синхроскопа, частотомера и в счетчиках электрической энергии.

Упрощенная схема однофазного индукционного счетчика электрической энергии показана на рис. 4.

 

Рис. 4. Схема однофазного индукционного счетчика

Механизм прибора состоит из двух неподвижных магнитопроводов: трехстержневого сердечника с катушкой напряжения 1 и П-образного сердечника 5 с двумя последовательно соединенными токовыми катушками, счетного механизма 2, алюминиевого диска 3, жестко укрепленного на оси, и постоянного магнита 4, служащего для создания тормозного момента.

Анализ работы индукционного счетчика показывает, что его вращающий момент пропорционален активной мощности переменного.

Важным параметром счетчика является порог чувствительности, под которым понимается минимальная нагрузка, выражаемая обычно в процентах от номинальной, при которой подвижная часть начинает безостановочно вращаться.

Наряду с этим счетчик не должен иметь самоход при разомкнутой токовой цепи и изменении напряжения в пределах 220 В ±10%.

Счетчики активной энергии выпускаются классов точности 0,5; 1,0; 2,0; 2,5. Порог чувствительности счетчика не должен превышать 0,4 % для счетчиков класса точности 0,5 и 0,5 % для счетчиков класса точности 1,0; 2,0; 2,5.

Применение: индукционные счетчики используют для измерения электрической энергии в однофазных и трехфазных цепях.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...