Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Г-10. Анаэробная фаза дыхания, химизм, место осуществления в клетке и биологическая роль




Гликолиз осуществляется во всех живых клетках организмов. В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты:

С6Н1206 -> 2С3Н402 + 2Н2. Этот окислительный процесс может протекать в анаэробных условиях (в отсутствие кислорода) и идет через ряд этапов. Прежде всего, для того чтобы подвергнуться дыхательному распаду, глюкоза должна быть активирована. Активация глюкозы происходит путем фосфорилирования шестого углеродного атома за счет взаимодействия с АТФ:

глюкоза + АТФ -> глюкозо-6-фосфат + АДФ

Реакция идет в присутствии ионов магния и фермента гексокиназа. Затем глюкозо-6-фосфат изомеризуется до фруктозо-6-фосфата. Процесс катализи­руется ферментом фосфоглюкоизомеразой:

глюкозо-6-фосфат —> фруктозо-6-фосфат

Далее происходит еще одно фосфорилирование при участии АТФ. Фосфор­ная кислота присоединяется к первому углеродному атому молекулы фруктозы, процесс катализируется ферментом фосфофруктокиназой:

фруктозо-6-фосфат + АТФ -> фруктозо-1,6-дифосфат + АДФ

Дальнейшие реакции, составляющие процесс гликолиза, складываются следующим образом: фруктозо-1,6-дифосфат расщепляется с образованием двух триоз, реакция катализируется ферментом альдолазой, которая состоит из четырех субъединиц и содержит свободные SH-группы. Реакция протекает по урав­нению:

Молекула фосфодиоксиацетона при участии фермента триозофосфатизомеразы превращается также в 3-фосфоглицериновый альдегид (ФГА). Дальнейшим превращениям подвергается именно ФГА, окисляясь до 1,3-дифосфоглицериновой кислоты (ДФГК). Это важнейший этап гликолиза. Процесс идет с участием неорганического фосфата (Н3Р04) и фермента глицеральдегид-3-фосфатдегидро-геназы Сущность процесса заключается в окислении альдегидной группы ФГА в карбоксильную ДФГК. Окисление идет с выделением энергии. За счет энер­гии окисления при участии неорганического фосфата (Н3Р04) в молекуле ДФГК образуется макроэргическая фосфатная связь. Одновременно происходит вос­становление кофермента НАД.

В целом реакция выглядит следующим образом:

На следующем этапе за счет имеющейся макроэргической связи в 1,3-дифосфоглицериновой кислоте образуется АТФ. Процесс катализируется ферментом фосфоглицераткиназой:

Таким образом, на этом этапе энергия окисления аккумулируется в форме энергии фосфатной связи АТФ. Затем 3-ФГК превращается в 2-ФГК, иначе говоря, фосфатная группа переносится из положения 3 в положение 2. Реакция 1 катализируется ферментом фосфоглицеромутазой и идет в присутствии магния:

Далее происходит дегидратация ФГК. Реакция идет при участии фермента енолазы в присутствии ионов Mg2+ или Мп2+. Дегидратация сопровождается перераспределением энергии внутри молекулы, в результате чего возникает макроэргическая связь. Образуется фосфоенолпировиноградная кислота (ФЕП):

Затем фермент пируваткиназа переносит богатую энергией фосфатную группу на АДФ с образованием АТФ и пировиноградной кислоты. Для протекания реакции необходимо присутствие ионов Mg2+ или Мn2+:

Поскольку при распаде одной молекулы глюкозы образуются две молекулы ФГА, то все реакции повторяются дважды. Таким образом, суммарное уравнение гликолиза. В результате процесса гликолиза образуются четыре молекулы АТФ, однако две из них покрывают расход на первоначальное активирование субстрата. Следовательно, накапливаются две молекулы АТФ. Образование АТФ в процессе следующее:

Энергетическая эффективность гликолиза невелика. Кроме того, образуются 2 молекулы НАДН, которые вступают в дыхательную цепь, что приводит к дополнительному образованию АТФ. Образовавшиеся две молекулы пировиноградной кислоты участвуют в аэробной фазе дыхания.

 

Аэробная фаза дыхания

Вторая фаза дыхания — аэробная — локализована в митохондриях и требует при­сутствия кислорода. В аэробную фазу дыхания вступает пировиноградная ки­слота. Общее уравнение этого процесса следующее:

2ПВК + 502 + 6Н20 -> 6С02 + 5Н20

Процесс можно разделить на три основные стадии:

1) окислительноедекарбоксилирование пировиноградной кислоты;

2) цикл трикарбоновых кислот (цикл Кребса);

3) заключительная стадия окисления — электронтранспортная цепь (ЭТЦ) требует обязательного присутствия 02.

Первые две стадии происходят в матриксе митохондрий, электронтранспортная цепь локализована на внут­ренней мембране митохондрий.

Первая стадия — окислительноедекарбоксилирование пировиноградной кисло­ты. Общая формула данного процесса следующая

CH3COCOOH + НАД + КоА - SH → CH3CO-S- КоА + НАДН + Н+ + СО2.
Процесс этот состоит из ряда реакций и катализируется сложной мультифер-ментной системой пируватдекарбоксилазой. Пируватдекарбоксилаза включает в себя три фермента и пять коферментов (тиаминпирофосфат, липоевая кисло­та, коэнзим А — KoA-SH, ФАД и НАД). Вся эта система имеет молекулярную массу 4,0-106. В результате этого процесса образуется активный ацетат — ацетилкоэнзим А (ацетил-КоА), восстановленный НАД (НАДН + Н+), и выделяет­ся углекислый газ (первая молекула). Восстановленный НАД поступает в цепь переноса электронов, а ацетил-КоА вступает в цикл трикарбоновых кислот. Важ­но отметить, что пируватдегидрогеназная система ингибируется АТФ. При накоплении АТФ выше определенного уровня превращение пировиноградной кислоты подавляется. Это один из способов регуляции интенсивности протека­ния аэробной фазы.

Вторая стадия — цикл трикарбоновых кислот(цикл Кребса).

В цикл вступает активный ацетат, или ацетил-КоА. Сущность реакций, входящих в цикл, состоит в том, что ацетил-КоА конденсируется с щавелевоуксусной кислотой (ЩУК). Далее превращение идет через ряд ди- и трикарбоновых органических кислот. В ре­зультате ЩУК регенерирует в прежнем виде. В процессе цикла присоединяются три молекулы Н2О, выделяются две молекулы СО2 и четыре пары водорода, ко­торые восстанавливают соответствующие коферменты (ФАД и НАД). Суммар­ная реакция цикла выражена уравнением:

CH3CO-S-KoA + 3Н2О + 3НАД + ФАД + АДФ + Фн
2СО2 + SH-KoA + 3НАДН + 3Н+ + ФАДН2 + АТФ

Третья стадия — электронтранспортная цепь (ЭТИ). В процессе окисления пировиноградной кислоты в цикле Кребса образовались пары водорода 2Н, которые мы можем рассматривать как 2Н+ + 2е. Именно в таком виде они, акцепти­рованные НАД и ФАД, передаются по цепи переносчиков. В процессе переноса протонов и электронов важную роль играют ферменты, относящиеся к классу оксидоредуктаз. Оксидоредуктазы, участвующие в дыхательной цепи, делятся на следующие основные группы. Пиридиновые дегидрогеназы, у которых коферментом служит НАД или НАДФ, отнимают два протона и два электрона от субстрата. При этом к коферментам присоединяются один протон и два электрона. Протон и один электрон связываются с атомом углерода в молекуле НАД, а второй электрон нейтрализует положительный заряд атома азота. Один протон выделяется в среду. НАД+ и НАДН хорошо растворимы в воде и присутствуют в цитоплазме и мито­хондриях. Коферменты НАД и НАДФ связаны с ферментом с помощью ионов металла и сульфгидрильных группировок. В зависимости от белкового носи­теля, к которому присоединен кофермент (НАД или НАДФ), различают более 150 пиридиновыхдегидрогеназ. Каждая из них специфична по отношению к определенному субстрату. Необходимо учитывать, что НАД и НАДФ могут вос­принимать протоны и электроны лишь в том случае, если субстрат имеет более отрицательное значение потенциала по сравнению с ними.

 

Г-13 Роль дыхания в биосинтезе белков, липидов, нуклеиновых кислот и других жизненно важных соединений.
В процессе дыхания образуется множество различных промежуточных продуктов, некоторая часть которых изымается клеткой из дыхательных 949b18ej реакций и используется для биосинтеза различных соединений. Кроме того, весь водород (в составе НАД*Н2 и ФАД*Н2) для биосинтетических реакций поступает тоже из процесса дыхания.
1. Роль дыхания в биосинтезе белков
В процессе гликолиза образуется много различных органических кислот. Путем аминирования (т.е. присоединения NН2-группы) таких кислот из них образуются аминокислоты, которые затем включаются в состав белков. Например, глутаминовая кислота образуется путем аминирования a-кетоглутаровой кислоты из цикла Кребса:
a-кетоглутаровая + NН3 + НАДФ*Н2 > Глу + НАДФ

При декарбоксилировании аминокислот образуются амины, являющиеся предшественниками алкалоидов. Важная роль в биосинтезе зеленых пигментов листа принадлежит дыханию, что свидетельствует о тесной связи фотосинтеза и дыхания.

2. Роль дыхания в биосинтезе липидов
В ходе 2-й стадии гликолиза (расщепление глюкозо-6-фосфата на глицеральдегид-3-фосфат и диоксиацетонфосфат) некоторые из молекул диоксиацетонфосфата не превращаются в глицеральдегид-3-фосфат, а используются для синтеза трехатомного спирта глицерина:
ДА + НАДФ*Н2 > глицерин + НАДФ
Второй компонент липидов – жирные кислоты – тоже поставляются дыханием. Жирные кислоты образуются в результате соединения друг с другом ацетильных групп из состава ацетилКоА:
nСН3-С=0-КоА + nНАДФ*Н2 > жирная кислота + nНАДФ + nН2О

С окислительными превращениями трикарбоновых кислот в цикле Кребса тесно связаны процессы биосинтеза жиров. Конденсация двух молекул уксусной кислоты при участии КоА приводит к образованию ацетоуксусной кислоты, при восстановлении которой получается масляная кислота.

3. Роль дыхания в биосинтезе нуклеиновых кислот
Глюкозо-6-фосфат, образовавшийся в результате 1-й стадии гликолиза, может не расщепляться на два 3С-сахара, а вступает в пентозофосфатный цикл – последовательность реакций, в результате которых от глюкозо-6-фосфата отщепляется СО2 и он превращается в 5С-сахар рибозо-5-фосфат:
глюкозо-6-фосфат > рибозо-5-фосфат + СО2
Затем от рибозо-5-фосфата отщепляется фосфатная группа и он превращается в рибозу, которая входит в состав РНК. Из рибозы синтезируется дезоксирибоза, входящая в состав ДНК.

4. Роль дыхания в биосинтезе ароматических соединений
Одними из промежуточных продуктов гликолиза являются сахара фосфоенолпируват (ФЕП) и эритрозо-4-фосфат. В результате соединения этих сахаров образуется циклическое соединение -шикимовая кислота, из которой затем образуются ароматические аминокислоты (фенилаланин, тирозин, триптофан), а из них ауксины, фенольные соединения и т.д.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...