Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Лазеры - оптические квантовые генераторы




 

В начале 60-х годов был создан квантовый генератор оптического диапазона - лазер “Light Amplification by Stimulated emission of Radiation” - усиления света путем индуцированного испускания излучения. Свойства лазерного излучения: высокая монохроматичность (предельно высокая световая частота), острая пространственная направленность, огромная спектральная яркость.

Согласно законам квантовой механики, энергия электрона в атоме не произвольна: она может иметь лишь определенный (дискретный) ряд значений Е1, Е2, Е3... Еn,называемых уровнями энергии. Значения эти различны для разных атомов. Набор дозволенных значений энергии носит название энергетического спектра атома. В нормальных условиях (при отсутствии внешних воздействий) большая часть электронов в атомах пребывает на самом низком возбужденном уровне Е1, т.е. атом обладает минимальным запасом внутренней энергии; остальные уровни Е2, Е3.....Еn соответствуют более высокой энергии атома и называются возбужденными.

При переходе электрона с одного уровня энергии на другой атом может испускать или поглощать электромагнитные волны, частота которых nmn = (Еm - Еn)h,

где h - постоянная Планка (h = 6.62 · 10-34 Дж·с);

Еn - конечный, Еm - начальный уровень.

Возбужденный атом может отдать свою некоторую избыточную энергию, полученную от внешнего источника или приобретенную им в результате теплового движения электронов, двумя различными способами.

Всякое возбужденное состояние атома неустойчиво, и всегда существует вероятность его самопроизвольного перехода в более низкое энергетическое состояние с испусканием кванта электромагнитного излучения. Такой переход называют спонтанным (самопроизвольным). Он носит нерегулярный, хаотический характер. Все обычные источники дают свет в результате спонтанного испускания.

Таков первый механизм испускания (электромагнитного излучения). В рассмотренной двухуровневой схеме испускания света никакого усиления излучения добиться не удастся. Поглощенная энергия hn выделяется в виде кванта с той же энергией hn и можно говорить о термодинамическом равновесии: процессы возбуждения атомов в газе всегда уравновешены обратными процессами испукания.

 


§2 Трехуровневая схема

В атомах вещества при термодинамическом равновесии на каждом последующем возбужденном уровне находится меньше электронов, чем на предыдущем. Если подействовать на систему возбуждающим излучением с частотой, попадающей в резонанс с переходом между уровнями 1 и 3 (схематично 1→3), то атомы будут поглощать это излучение и переходить с уровня 1 на уровень 3. Если интенсивность излучения достаточно велика, то число атомов, перешедших на уровень 3, может быть весьма значительным и мы, нарушив равновесное распределение населенностей уровней, увеличим населенность уровня 3 и уменьшим, следовательно, населенность уровня 1.

С верхнего третьего уровня возможны переходы 3→1 и 3→2. Оказалось, что переход 3→1 приводит к испусканию энергии Е31=hn3-1, а переход 3→2 не является излучательным: он ведет к заселению ”сверху” промежуточного уровня 2 (часть энергии электронов при этом переходе отдается веществу, нагревая его). Этот второй уровень называется метастабильным, и на нем в итоге окажется атомов больше, чем на первом. Поскольку атомы на уровень 2 поступают с основного уровня 1 через верхнее состояние 3, а обратно на основной уровень возвращаются с “большим запаздыванием”, то уровень 1 “обедняется”.

В результате и возникает инверсия, т.е. обратное инверсное распределение населенностей уровней. Инверсия населенностей энергетических уровней создается интенсивным вспомогательным излучением, называемым излучением накачки и приводит в конечном итоге к индуцированному (вынужденному) размножению фотонов в инверсной среде.

Как во всяком генераторе, в лазере для получения режима генерации необходима обратная связь. В лазере обратная связь реализуется с помощью зеркал. Усиливающая (активная) среда помещается между двумя зеркалами - плоскими или чаще вогнутыми. Одно зеркало делается сплошным, другое частично прозрачным.

“Затравкой” для процесса генерации служит спонтанное испускание фотона. В результате движения этого фотона в среде он порождает лавину фотонов, летящих в том же направлении. Дойдя до полупрозрачного зеркала, лавина частично отразится, а частично пройдет сквозь зеркало наружу. После отражения от правого зеркала волна идет обратно, продолжая усиливаться. Пройдя расстояние l, она достигает левого зеркала, отражается и снова устремляется к правому зеркалу.

Такие условия создаются только для осевых волн. Кванты других направлений не способны забрать заметную часть запасенной в активной среде энергии.

Выходящая из лазера волна имеет почти плоский фронт, высокую степень пространственной и временной когерентности по всему сечению пучка.

В лазерах в качестве активной среды применяют различные газы и газовые смеси (газовые лазеры), кристаллы и стекла с примесями определенных ионов (твердотельные лазеры), полупроводники (полупроводниковые лазеры).

Способы возбуждения (в системе накачки) зависят от типа активной среды. Это либо способ передачи энергии возбуждения в результате столкновения частиц в плазме газового разряда (газовые лазеры), либо передача энергии облучением активных центров некогерентным светом от специальных источников (оптическая накачка в твердотельных лазерах), либо инжекция неравновесных носителей через р-n - переход, либо возбуждение электронным пучком, либо оптическая накачка(полупроводниковые лазеры).

В настоящее время создано чрезвычайно много различных лазеров, дающих излучение в широком диапазоне длин волн (200¸2·104 нм). Лазеры работают с очень короткой длительностью светового импульса t» 1·10-12 с, могут давать и непрерывное излучение. Плотность потока энергии лазерного излучения составляет величину порядка 1010Вт/см2 (интенсивность Солнца составляет всего 7·103 Вт/см2).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...