Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Ядерные реакции и их основные типы.




Ядерная реакцияэто превращение атомных ядер при взаимодействии с элементарными частицами (в том числе и с γ-квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом:

, или,

где X и Y – исходные и конечные ядра, а и b – бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частица.

В ядерной физике эффективность взаимодействия характеризуют эффективным сечением σ. С каждым видом взаимодействия частицы с ядром связывают своё эффективное сечение: эффективное сечение рассеяния; эффективное сечение поглощения.

Эффективное сечение ядерной реакции σ находится по формуле:

  , (9.5.1)  

где N – число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объёма n ядер; d N – число этих частиц, вступающих в реакцию в слое толщиной d x. Эффективное сечение σ имеет размерность площади и характеризует вероятность того, что при падении пучка частиц на вещество произойдёт реакция.

Единица измерения эффективного сечения ядерных процессов – барн (1 барн = 10–28 м2).

В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продуктов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса.

В отличие от радиоактивного распада, который всегда протекает с выделением энергии, ядерные реакции могут быть как экзотермические (с выделением энергии), так и эндотермические (с поглощением энергии).

Важнейшую роль в объяснении механизма многих ядерных реакций сыграло предположение Н. Бора (1936 г.) о том, что ядерные реакции протекают в две стадии по следующей схеме:

  . (9.5.2)  

Первая стадия – это захват ядром X частицы a, приблизившейся к нему на расстояние действия ядерных сил (примерно), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбуждённом состоянии. При столкновении нуклонов составного ядра, один из нуклонов (или их комбинация, например дейтрон) или α - частица могут получить энергию, достаточную для вылета из ядра. В результате наступает вторая стадия ядерной реакции – распад составного ядра на ядро Y и частицу b.

В ядерной физике вводится характерное ядерное времявремя, необходимое для пролета частицей расстояния порядка величины равной диаметру ядра (). Так для частицы с энергией 1 МэВ (что соответствует её скорости 107 м/с) характерное ядерное время.С другой стороны, доказано, что время жизни составного ядра 10–16 – 10–12 с, т.е. составляет (106 – 1010)τ. Это означает, что за время жизни составного ядра может произойти очень много столкновений нуклонов между собой, т.е. перераспределение энергии между нуклонами действительно возможно. Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому характер распада составного ядра (испускаемые им частицы b) – вторая стадия ядерной реакции – не зависит от способа образования составного ядра, первой стадии.

Если испущенная частица тождественна с захваченной (), то схема (4.5.2) описывает рассеяние частицы: упругое – при; неупругое – при. Если же испущенная частица не тождественна с захваченной (), то имеем сходство с ядерной реакцией в прямом смысле слова.

Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например реакции, вызываемые быстрыми нуклонами и дейтронами).

Ядерные реакции классифицируются по следующим признакам:

· по роду участвующих в них частиц – реакции под действием нейтронов; реакции под действием заряженных частиц (например протонов, дейтронов, α-частиц); реакции под действием γ-квантов;

· по энергии вызывающих их частиц – реакции при малых энергиях (порядка электронвольтов), происходящие в основном с участием нейтронов; реакции при средних энергиях (порядка до нескольких МэВ), происходящие с участием γ-квантов и заряженных частиц (протоны, α-частицы); реакции, происходящие при высоких энергиях (сотни и тысячи МэВ), приводящие к появлению отсутствующих в свободном состоянии элементарных частиц и имеющих большое значение для их изучения;

· по роду участвующих в них ядер – реакции на лёгких ядрах (А < 50); реакции на средних ядрах (50 < A < 100); реакции на тяжёлых ядрах (A > 100);

· по характеру происходящих ядерных превращений – реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата (в этих реакциях составное ядро не испускает никаких частиц, а переход в основное состояние, испускании одинго или нескольких γ-квантов).

Ядерная реакцияэто превращение атомных ядер при взаимодействии с элементарными частицами (в том числе и с γ-квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом:

, или,

где X и Y – исходные и конечные ядра, а и b – бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частица.

В ядерной физике эффективность взаимодействия характеризуют эффективным сечением σ. С каждым видом взаимодействия частицы с ядром связывают своё эффективное сечение: эффективное сечение рассеяния; эффективное сечение поглощения.

Эффективное сечение ядерной реакции σ находится по формуле:

  , (9.5.1)  

где N – число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объёма n ядер; d N – число этих частиц, вступающих в реакцию в слое толщиной d x. Эффективное сечение σ имеет размерность площади и характеризует вероятность того, что при падении пучка частиц на вещество произойдёт реакция.

Единица измерения эффективного сечения ядерных процессов – барн (1 барн = 10–28 м2).

В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продуктов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса.

В отличие от радиоактивного распада, который всегда протекает с выделением энергии, ядерные реакции могут быть как экзотермические (с выделением энергии), так и эндотермические (с поглощением энергии).

Важнейшую роль в объяснении механизма многих ядерных реакций сыграло предположение Н. Бора (1936 г.) о том, что ядерные реакции протекают в две стадии по следующей схеме:

  . (9.5.2)  

Первая стадия – это захват ядром X частицы a, приблизившейся к нему на расстояние действия ядерных сил (примерно), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбуждённом состоянии. При столкновении нуклонов составного ядра, один из нуклонов (или их комбинация, например дейтрон) или α - частица могут получить энергию, достаточную для вылета из ядра. В результате наступает вторая стадия ядерной реакции – распад составного ядра на ядро Y и частицу b.

В ядерной физике вводится характерное ядерное времявремя, необходимое для пролета частицей расстояния порядка величины равной диаметру ядра (). Так для частицы с энергией 1 МэВ (что соответствует её скорости 107 м/с) характерное ядерное время.С другой стороны, доказано, что время жизни составного ядра 10–16 – 10–12 с, т.е. составляет (106 – 1010)τ. Это означает, что за время жизни составного ядра может произойти очень много столкновений нуклонов между собой, т.е. перераспределение энергии между нуклонами действительно возможно. Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому характер распада составного ядра (испускаемые им частицы b) – вторая стадия ядерной реакции – не зависит от способа образования составного ядра, первой стадии.

Если испущенная частица тождественна с захваченной (), то схема (4.5.2) описывает рассеяние частицы: упругое – при; неупругое – при. Если же испущенная частица не тождественна с захваченной (), то имеем сходство с ядерной реакцией в прямом смысле слова.

Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например реакции, вызываемые быстрыми нуклонами и дейтронами).

Ядерные реакции классифицируются по следующим признакам:

· по роду участвующих в них частиц – реакции под действием нейтронов; реакции под действием заряженных частиц (например протонов, дейтронов, α-частиц); реакции под действием γ-квантов;

· по энергии вызывающих их частиц – реакции при малых энергиях (порядка электронвольтов), происходящие в основном с участием нейтронов; реакции при средних энергиях (порядка до нескольких МэВ), происходящие с участием γ-квантов и заряженных частиц (протоны, α-частицы); реакции, происходящие при высоких энергиях (сотни и тысячи МэВ), приводящие к появлению отсутствующих в свободном состоянии элементарных частиц и имеющих большое значение для их изучения;

· по роду участвующих в них ядер – реакции на лёгких ядрах (А < 50); реакции на средних ядрах (50 < A < 100); реакции на тяжёлых ядрах (A > 100);

· по характеру происходящих ядерных превращений – реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата (в этих реакциях составное ядро не испускает никаких частиц, а переход в основное состояние, испускании одинго или нескольких γ-квантов).

61.Позитрон |3+- распад. Электронный захват.

62. Открытие нейтрона. Ядерные реакции под действием нейтронов.

· Нейтроны, являясь электрически нейтральными частицами, не испытывают кулоновского отталкивания и поэтому легко проникают в ядра и вызывают разнообразные ядерные превращения. Изучение ядерных реакций под действием нейтронов не только сыграло огромную роль в развитии ядерной физики, но и привело к появлению ядерных реакторов.

· Краткая история открытия нейтрона такова. Немецкие физики В. Боте (1891—1957) и Г. Беккер в 1930 г., облучая ряд элементов, в частности ядра бериллия, a -частицами, обнаружили возникновение излучения очень большой проникающей спо­собности. Так как сильно проникающими могут быть только нейтральные частицы, то было высказано предположение, что обнаруженное излучение — жесткие g -лучи с энер­гией примерно 7 МэВ (энергия рассчитана по поглощению). Дальнейшие эксперименты (Ирен и Фредерик Жолио-Кюри, 1931 г.) показали, что обнаруженное излучение, взаимодействуя с водородосодержащими соединениями, например парафином, выби­вает протоны с пробегами примерно 26 см. Из расчетов следовало, что для получения протонов с такими пробегами предполагаемые g -кванты должны были обладать фантастической по тем временам энергией 50 МэВ вместо расчетных 7 МэВ!

· Пытаясь найти объяснение описанным экспериментам, английский физик Д. Чэдвик (1891—1974) предположил (1932), а впоследствии доказал, что новое проникающее излучение представляет собой не g -кванты, а поток тяжелых нейтральных частиц, названных им нейтронами. Таким образом, нейтроны были обнаружены в следующей ядерной реакции:

·

· Эта реакция не является единственной, ведущей к выбрасыванию из ядер нейтронов (например, нейтроны возникают в реакциях Li (a, n) B и В (a, п) N).

· Характер ядерных реакций под действием нейтронов зависят от их скорости (энергии). В зависимости от энергии нейтроны условно делят на две группы: медленные и быстрые. Область энергий медленных нейтронов включает в себя область ультрахолодных (с энергией до 10–7 эВ), очень холодных (10–7 — 10–4 эВ), холодных (10–4 — 10–3 эВ), тепловых (10–3 — 0,5 эВ) и резонансных (0,5 — 104 эВ) нейтронов. Ко второй группе можно отнести быстрые (104 — 108 эВ), высокоэнергетичные (108 — 1010 эВ) и релятивистские (³1010 эВ) нейтроны.

· Замедлить нейтроны можно пропуская их через какое-либо вещество, содержащее водород (например, парафин, вода). Проходя через такие вещества, быстрые нейтроны испытывают рассеяние на ядрах и замедляются до тех пор, пока их энергия не станет равной, например, энергии теплового движения атомов вещества замедлителя, т. е. равной приблизительно kT.

· Медленные нейтроны эффективны для возбуждения ядерных реакций, так как они относительно долго находятся вблизи атомного ядра. Благодаря этому вероятность захвата нейтрона ядром становится довольно большой. Однако энергия медленных нейтронов мала, потому они не могут вызывать, например, неупругое рассеяние. Для медленных нейтронов характерны упругое рассеяние на ядрах (реакция типа (п, п)) и радиационный захват (реакция типа (п, g)). Реакция (п, g) приводит к образованию нового изотопа исходного вещества:

·

· например

·

· Часто в результате (n, g)-реакции образуются искусственные радиоактивные изотопы, дающие, как правило, b -распад. Например, в результате реакции

·

· образуется радиоактивный изотоп Р, претерпевающий b -распад с образованием стабильного изотопа серы:

·

· Под действием медленных нейтронов на некоторых легких ядрах наблюдаются также реакции захвата нейтронов с испусканием заряженных частиц — протонов и a -частиц (под действием тепловых нейтронов):

·

· (используется для обнаружения нейтронов) или

·

· (используется для получения трития, в частности в термоядерных взрывах).

· Реакции типа (n, р) и (n,), т. е. реакции с образованием заряженных частиц, происходят в основном под действием быстрых нейтронов, таккак в случае медленных нейтронов энергии атомного ядра недостаточно для преодоления потенциального барьера, препятствующего вылету протонов и a -частиц. Эти реакции, как и реакции радиационного захвата, часто ведут к образованию b -активных ядер.

· Для быстрых нейтронов наблюдается неупругое их рассеяние, совершающееся по схеме

·

· где вылетающий из ядра нейтрон обозначен как п', поскольку это не тот нейтрон, который проник в ядро; п' имеет энергию, меньшую энергии п, а остающееся после вылета нейтрона ядро находится в возбужденном состоянии (отмечено звездочкой), поэтому его переход в нормальное состояние сопровождается испусканием g -кванта.

· Когда энергия нейтронов достигает значений 10 МэВ, становятся возможными реакции типа (n, 2 n). Например, в результате реакции

·

· образуется b -активный изотоп U, претерпевающий распад по схеме

· U ® Np + е.

·

63. Реакция деления ядра. Цепная реакция деления.

ДЕЛЕНИЕ ЯДЕР УРАНА

 

Делиться могут только ядра некоторых тяжелых элементов, например, урана.

 


Ядро урана - 235 имеет форму шара. Поглотив нейтрон, ядро возбуждается и начинает деформироваться.
Оно растягивается из стороны в сторону до тех пор, пока кулоновские силы отталкивания между протонами не начнут преобладать над ядерными силами притяжения. После этого ядро разрывается на две части и осколки разлетаются со скоростью 1/30 скорости света. При делении ядра образуются еще 2 или 3 нейтрона.
Появление нейтронов объясняется тем, что число нейтронов в осколках оказывается больше, чем это допустимо.

Имеющие огромную скорость разлетающиеся осколки тормозятся окружающей средой.
Кинетическая энергия осколков превращается во внутреннюю энергию среды, которая нагревается.
Таким образом, деление ядер урана сопровождается выделением большого количества энергии.


 


ЦЕПНАЯ ЯДЕРНАЯ РЕАКЦИЯ


- это процесс, в котором одна проведенная реакция вызывает последующие реакции такого же типа.

При делении одного ядра урана образовавшиеся нейтроны могут вызвать деления других ядер урана, при этом число нейтронов нарастает лавинообразно.


Отношение числа образовавшихся нейтронов в одном акте деления к числу таких нейтронов в предыдущем акте деления называется коэффициентом размножения нейтронов k.

При k меньше 1 реакция затухает, т.к. число поглщенных нейтронов больше числа вновь образовавшихся.
При k больше 1 почти мгновенно происходит взрыв.
При k равном 1 идет управляемая стационарная цепная реакция.

Цепная реакция сопровождается выделением большого количества энергии.


Для осуществлении цепной реакции не получается использовать любые ядра, делящиеся под влиянием нейтронов.

Используемый в качестве топлива для атомных реакторов химический элемент уран состоит в природе из двух изотопов: урана-235 и урана - 238.

В природе изотопы урана-235 составляют всего лишь 0,7% от всего запаса урана, однако именно они пригодны для проведения цепной реакции, т.к. делятся под влиянием медленных нейтронов.

Ядра урана-238 могут делиться лишь под влиянием нейтронов большой энергии (быстрых нейтронов). Такую энергию имеют только 60% нейтронов, появляющихся при делении ядра урана-238. Примерно только 1 из 5 образовавшихся нейтронов вызывает деление ядра.

Условия протекания цепной реакции в уране-235:

- минимальное количество топлива (критическая масса), необходимое для проведения управляемой цепной реакции в атомном реакторе
- скорость нейтронов должна вызывать деление ядер урана
- отсутствие примесей, поглощающих нейтроны

Критическая масса:

- если масса урана мала, нейтроны будут вылетать за его пределы, не вступая в реакцию
- если масса урана велика, возможен взрыв за счет сильного увеличения числа нейтронов
- если масса соответствует критической, протекает управляемая цепная реакция

Для урана-235 критическая масса составляет 50 кг (это, например, шар из урана диаметром 9 см).


Первая управляемая цепная реакция - США в 1942 г. (Э.Ферми)
В СССР - 1946 г. (И.В.Курчатов).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...