Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Регулирование режима работы компрессора




Изначально самым оптимальным режимом работы любой компрессорной установки является ее номинальный расчетный режим. Но объем вырабатываемого компрессором на номинальном режиме сжатого воздуха не всегда является точно соответствующим объему забора воздуха потребителями. Как правило, даже в течение одной рабочей смены уровень потребления воздуха может значительно колебаться. Поэтому производительность компрессора необходимо регулировать в соответствии с этими изменениями.

Есть несколько методов регулирования уровня производительности компрессора, и они сильно разнятся и по затратам на реализацию, и по эффективности6

  1. Включение-выключение компрессорной установки.
  2. Сбрасывание лишнего воздуха в атмосферу.
  3. Подключение дополнительного объема.
  4. Работа «на холостом ходу».
  5. Дросселирование.
  6. Использование частотного преобразователя для регулирования частоты вращения электрического двигателя.
  7. Дискретный метод регулирования частоты вращения электрического двигателя.

Включение – выключение компрессорной установки является саамы элементарным способом регулирования производительности, предусматривающий отключение электродвигателя при повышении давления до максимального уровня и включение его при достижении минимально допустимого уровня давления. Во время простоя компрессора он не потребляет электроэнергию, что является позитивной стороной данного метода, но постоянные включения и выключения электродвигателя в целом негативно отражаются на работе системы и в результате могут повлечь за собой перегрев обмотки электродвигателя. Подобный способ чаще всего применяют по отношению к маломощным компрессорным установкам.

Сбрасывание излишков воздуха считается самым неэкономичным способом регулирования производительности, но несмотря на это, некоторые производственные предприятия все еще пользуются им. Суть метода заключается в наличии специального клапана, который открывают, как только давление в системе достигает максимальных показателей. Это крайне нерационально, так как в итоге весь энергоресурс, затраченный на сжатие данного воздуха, оказывается растраченным впустую. Поэтому такой способ целесообразно применять только в очень мощных компрессорных установках, в которых к тому же крайне редко достигается максимальный уровень давления.

Еще один способ регулирования производительности компрессора – подключение дополнительного «мертвого объема». Он применяется только для компрессоров поршневого типа и основан на использовании зазора, который всегда предусмотрительно оставляют между поршнем и крышкой цилиндра для того, чтобы компенсировать тепловые деформации. Если искусственно увеличивать этот так называемый «мертвый объем», производительность компрессора будет уменьшаться. Но этот способ также сложно отнести к экономичным, ведь сжатие воздуха, находящегося в «мертвом объеме», также требует энергозатрат.

В машинах роторного типа (винтовых, спиральных или пластинчато-роторных) применяется способ, при котором регулирование осуществляется посредством перехода на «холостой ход». Это стандартная методика регулирования производительности винтовых компрессоров – при достижении максимальных показателей давления в системе срабатывает реле, которое закрывает заслонку всасывающего клапана. При этом работа компрессора не останавливается, он продолжает потреблять около 20% обычного количества энергоресурсов, но давление в системе не нагнетается.

Существует также способ регулирования производительности, основанный на дросселировании. Он осуществляется с помощью пропорционального всасывающего клапана, который не дает давлению в системе повышаться сверх меры, перекрывая путь всасываемому воздуху посредством газодинамического сопротивления. Производительность компрессора при этом значительно понижается, а давление в системе вскоре достигает номинального уровня. Этот метод удобен тем, что система регулирует производительность практически самостоятельно – заслонка пропорционального всасывающего клапана открывается под влиянием давления воздуха в системе. Кроме того, он более эффективен, чем метод «холостого хода», но в то же время обходится дороже.

Самый удобный и экономичный способ регулирования производительности компрессорной установки, известны на сегодняшний день – это регулирование частоты вращения электродвигателя посредством использования частотного преобразователя. Потери энергии при использовании этого метода минимизируются, а пределы регулирования производительности расширяются и составляют от 20% до 100% (другие методы не создают такого широкого диапазона регулирования). Но в то же время этот способ является наиболее дорогостоящим. Он применим для всех компрессорных установок объемного типа, но его использование в установках динамического типа (осевых, центробежных и т.д.) нередко вызывает проблемы – может возникнуть резонанс с собственными частотами колебаний турбокомпрессора установки.

Похожим методом является дискретное регулирование частоты вращения электродвигателя, посредством которого регулируется общая производительность компрессора. Основное отличие от предыдущего метода заключается в том, что вместо плавного изменения скорости вращения вала здесь имеет место дискретное изменение, основанное на применении специальных многоскоростных двигателей. Это обходится значительно дешевле, чем использование частотного преобразователя, а эффективность почти равнозначная.

Поскольку способов регулирования производительности компрессорных установок много, выбирать оптимальный для Вашего производства способ необходимо на основании всех существующих факторов, в первую очередь – экономической целесообразности и периода окупаемости выбранного метода.

 

37 Вентилятор - устройство для перемещения газа со степенью сжатия менее 1,15 (или разностью давлений на выходе и входе не более 15 кПа).

Типы вентиляторов. В общем случае вентилятор — ротор, на котором определенным образом закреплены лопатки, которые при вращении ротора, сталкиваясь с воздухом, отбрасывают его. От положения и формы лопаток зависит направление, в котором отбрасывается воздух. Существует несколько основных видов по типу конструкции вентиляторов, используемых для перемещения воздуха:

  • осевые (аксиальные); Данный вид вентилятора содержит лопасти (в некоторых случаях вместо понятия «лопасти» применяется понятие «лопатки»), которые перемещают воздух вдоль оси, вокруг которой они вращаются.
  • центробежные (радиальные); Данный вид вентилятора имеет вращающийся (ротор), состоящий из лопаток спиральной формы. Воздух через входное отверстие засасывается вовнутрь ротора, где он приобретает вращательное движение и, за счет центробежной силы и специальной формы лопаток, направляется в выходное отверстие специального спирального кожуха. Таким образом, выходной поток воздуха находится под прямым углом к входному.
  • диаметральные (тангенциальные); Имеет ротор типа «беличья клетка» (ротор пустой в центре и лопатки осевого вентилятора вдоль периферии) — обычно выполнен в форме продолговатого цилиндра. Вместо стенок у цилиндра крыльчатка из загнутых вперед лопастей. Крыльчатка тангенциального вентилятора встроена в корпус в форму диффузора, напоминающий корпус центробежного вентилятора. Только воздух забирается не с торца вентилятора, а по всей его длине с фронтальной стороны устройства. Воздух увлекается вращающимися лопатками, а потом благодаря диффузору приобретает ускорение в нужном направлении. То есть в тангенциальных (тангенсальных) вентиляторах воздух поступает вдоль периферии ротора, и движется к выходу подобно тому, как это происходит в центробежном вентиляторе. Такие вентиляторы производят равномерный воздушный поток вдоль всей ширины вентилятора и бесшумны при работе. Они сравнительно громоздки, и воздушное давление низкое. Тангенциальные вентиляторы широко применяются в кондиционерах, воздушных завесах, фанкойлах и других устройствах, где не важен напор воздуха. Отличительной особенностью тангенциальных вентиляторов можно назвать большой расход воздуха, низкий уровень шума и низкий создаваемый напор. Последняя особенность определяет невозможность осуществлять глубокую фильтрацию воздуха при помощи бытового кондиционера. Известны разные виды.

Вентиляторы обычно используются как для перемещения воздуха — для вентиляции помещений, охлаждения оборудования, воздухоснабжения процесса горения (воздуходувки и дымососы). Мощные осевые вентиляторы могут использоваться как движители, так как отбрасываемый воздух, согласно третьему закону Ньютона, создает силу противодействия, действующую на ротор.

Осевой компрессор

В осевом компрессоре поток рабочего тела, как правило воздуха, движется условно вдоль оси вращения ротора компрессора. Осевой компрессор состоит из чередующихся подвижных лопаточных решёток ротора, состоящих из лопаток закреплённых на валу и именуемых рабочими колёсами (РК), и неподвижных лопаточных решёток статора и именуемых направляющими аппаратами (НА). Совокупность, состоящая из одного рабочего колеса и одного направляющего аппарата именуется ступенью.

Компрессорная лопатка
1 — передняя кромка,
2 — перо лопатки,
3 — задняя кромка,
4 — замок лопатки

 

Треугольники скоростей рабочего колеса иллюстрирующие сложное движение частиц воздуха. Видна диффузорность межлопаточного канала.

Пространство между соседними лопатками как в рабочем колесе, так и в направляющем аппарате именуется межлопаточным каналом. Межлопаточный канал в как в рабочем колесе, так и в направляющем аппарате диффузорный, то есть расширяющийся. Межлопаточный канал является расширяющимся, когда диаметр окружностей, вписанных в этот канал увеличивается при вписывании этих окружностей от передней кромки к задней.

При прохождении через рабочее колесо воздух участвует в сложном движении.

Где абсолютное движение — движение частиц воздуха относительно оси двигателя. (На рисунке обозначено буквой u).

Относительное движение — движение частиц воздуха относительно лопаток рабочего колеса. (На рисунке обозначено буквой w).

Переносное движение — вращение рабочего колеса относительно оси двигателя. (На рисунке обозначено буквой U).

Таким образом, когда частицы воздуха попадают в рабочее колесо со скоростью, обозначенной на рисунке вектором w1, лопатки воздействуют на частицы воздуха придавая им переносную скорость, обозначенную на рисунке вектором U. По правилу сложения векторов абсолютная скорость частиц воздуха в этот момент обозначена вектором u1.

При прохождении через рабочее колесо, за счёт диффузорности межлопаточного канала, происходит уменьшение модуля переносной скорости на выходе из рабочего колеса w2, за счёт кривизны межлопаточного канала происходит изменение направления вектора переносной скорости на выходе из рабочего колеса w2. На выходе из рабочего колеса на частицы воздуха продолжают действовать лопатки, придавая им переносную скорость, обозначенную на рисунке вектором U. По правилу сложения векторов абсолютная скорость частиц воздуха, в этот момент обозначена вектором u2, который изменяет направление и увеличивается по модулю. Таким образом в рабочем колесе происходит рост полного давления воздуха.

После рабочего колеса воздух попадает в направляющий аппарат. За счёт диффузорности межлопаточного канала происходит торможение потока, что приводит к росту статического давления. Кривизна межлопаточного канала приводит к повороту потока для получения более эффективного угла входа потока воздуха в следующее рабочее колесо.

Таким образом, ступень за ступенью, происходит повышение давления воздуха. Скорость потока в рабочем колесе растёт, в направляющем аппарате — падает. Но ступени компрессора и весь компрессор проектируют таким образом, чтобы скорость потока уменьшалась. При прохождении воздуха через компрессор растёт и его температура, что является не задачей компрессора а отрицательным побочным эффектом. Перед входом в первое рабочее колесо может быть установлен входной направляющий аппарат (ВНА) который производит предварительный поворот потока воздуха на входе в компрессор.

Достаточно высокая степень газодинамической инертности лопастных компрессоров является причиной того, что компрессор достаточно медленно набирает обороты, обладает низкой приёмистостью. Лопастные компрессоры, как правило, приводятся в движение турбинами, которые, в свою очередь весьма долго снижают свои обороты, таким образом, смена режимов работы таких турбокомпрессоров занимает достаточно длительный промежуток времени. Решением данной проблемы стало разделение компрессоров на каскады: компрессор низкого давления со своей отдельной турбиной устанавливается на валу, пропущенном через полый вал следующего за ним компрессора высокого давления и его турбины, – такие двигатели называют двухвальными. Данное решение улучшило работу компрессоров на переходных режимах, а также повысило их газодинамическую устойчивость. Другим средством повышения газодинамической устойчивости осевых компрессоров стало применение поворачивающихся направляющих аппаратов для изменения угла входа потока в рабочее колесо в зависимости от режима работы двигателя.

 

39 ОСНОВНЫЕ ПОНЯТИЯ ГИДРОПРИВОДА

Привод –энергосиловое устройство, приводящее в движение машину, механизм. Привод состоит из источника энергии, передаточного механизма и аппаратуры управления.

Электропривод

Гидропривод

Пневмопривод

Гидроприводом называется совокупность устройств, предназначенных для получения усилий и перемещений в механизмах и машинах посредством рабочей жидкости, находящейся под давлением.

Типы гидроприводов

1.Гидродинамический

2. Объемный.

В гидродинамических приводах используется в основном кинетическая энергия потока жидкости.

• В объемных гидроприводах используется потенциальная энергия давления рабочей жидкости.

• Наиболее распространен объемный гидропривод.

• Преобразование силы и перемещения

• Принцип работы объемного гидропривода основан на законе Паскаля, по которому всякое изменение давления в какой-либо точке покоящейся жидкости, не нарушающее ее равновесия, передается в остальные ее точки без изменения.

• ПРЕОБРАЗОВАНИЕ СИЛЫ

р=F1/А1=F2/А2 F2/F1=А2/А1 F2=F1 А2/А1

• ПРЕОБРАЗОВАНИЕ ПЕРЕМЕЩЕНИЯ

V=А1l1=А2l2 l2=l1А1/А2

 

 

Сравнение приводов

Преимущества гидропривода

1. Бесступенчатое регулирование скорости движения и обеспечение малых устойчивых скоростей. Минимальная угловая скорость вращения вала гидромотора может составлять 2…3 об/мин.

• 2. Небольшие габариты и масса. Время разгона, благодаря меньшему моменту инерции вращающихся частей не превышает долей секунды в отличие от электродвигателей, у которых время разгона может составлять несколько секунд.

3. Допускается частое реверсирование движения выходного звена гидропередачи. Например, частота реверсирования вала гидромотора может быть доведена до 500, а штока поршня гидроцилиндра даже до 1000 реверсов в минуту. В этом отношении гидропривод уступает лишь пневмоприводу, у которого число реверсов может достигать 1500 в минуту.

• 4. Большое быстродействие и наибольшая механическая и скоростная жесткость. Механическая жесткость - величина относительного позиционного изменения положения выходного звена под воздействием изменяющейся внешней нагрузки. Скоростная жесткость - относительное изменение скорости выходного звена при изменении приложенной к нему нагрузки

• 5. Автоматическая защита гидросистем от вредного воздействия перегрузок благодаря наличию предохранительных клапанов.

6. Хорошие условия смазки трущихся деталей и элементов гидроаппаратов, что обеспечивает их надежность и долговечность. Так, например, при правильной эксплуатации насосов и гидромоторов срок их службы доведен в настоящее время до 5…10 тыс. ч работы под нагрузкой. Гидроаппаратура может не ремонтироваться до 10…15 лет.

• 7. Простота преобразования вращательного движения в возвратно-поступательное и возвратно-поворотные без применения каких-либо механических передач.

8. Простота автоматизации работы гидрофицированных механизмов, возможность автоматического изменения их режимов работы по заданной программе.

Недостатки гидропривода

• 1.Изменение вязкости применяемых жидкостей от температуры, что приводит к изменению рабочих характеристик гидропривода и создает дополнительные трудности при эксплуатации гидроприводов (особенно при отрицательных температурах).

• 2. Утечки жидкостиснижают КПД привода, вызывают неравномерность движения выходного звена гидропередачи, затрудняют достижение устойчивой скорости движения рабочего органа при малых скоростях.

• 3. Требуется высокая точность изготовления элементов гидропривода.

• 4. Взрыво- и огнеопасность применяемых минеральных рабочих жидкостей.

• 5. Невозможность передачи энергии на большие расстояния из-за значительных гидравлических сопротивлений, снижение при этом КПД гидросистемы

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...