Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Закон анатомо-физиологической целостности.

СРСП

По дисциплине: «Медицинская биофизика»

На тему:«Нейроны.Распространение импульсов по возбужденным нервным волокнам.»

 

Факультет: МПД

Группа: 103-Б

Выполнила: Шкунова М

Проверила:

Алматы 2017


 

План

I Нейроны.

II Строение нейрона.

III Нейромедиаторы.

IV Законы проведения возбуждения по нервному волокну.

 

 

Нейрон — это нервная клетка, являющаяся основным строительным блоком для нервной системы. Нейроны во многом схожи с другими клетками, но существует одно важное отличие нейрона от других клеток: нейроны специализируются на передаче информации по всему телу.

Эти узкоспециализированные клетки способны на передачу информации и химическим, и электрическим путем. Существует также несколько различных видов нейронов, выполняющих различные функции в человеческом теле.

Сенсорные (чувствительные) нейроны доносят информацию, поступающую из клеток сенсорных рецепторов в мозг. Моторные (двигательные) нейроны передают команды от мозга к мускулам. Интернейроны (вставочные нейроны) способны сообщать информацию между разными нейронами в теле.

Нейроны в сравнении с другими клетками нашего тела

Сходства с другими клетками:

· Нейроны, как и другие клетки имеют ядро, содержащее генетическую информацию

· Нейроны и другие клетки окружены оболочкой, которая защищает клетку.

· В клеточных телах нейронов и других клеток содержатся органеллы, поддерживающие жизнь клетки: митохондрии, аппарат Гольджи и цитоплазма.

Отличия, которые делают нейроны уникальными

В отличии от других клеток, нейроны перестают воспроизводится вскоре после рождения. Поэтому некоторые отделы мозга имеют большее количество нейронов при рождении, чем потом, т. к. нейроны гибнут, но не перемещаются. Несмотря на то, что нейроны не размножаются, учеными было доказано, что новые связи между нейронами появляются в течении всей жизни.

У нейронов есть мембрана, которая создана для того, чтобы посылать информацию в другие клетки. Дендриты и аксоны — это особые устройства, передающие и воспринимающие информацию. Межклеточные связи называются синапсами. Нейроны выпускают химические соединения (нейромедиаторы или нейротрансмиттеры) в синапсы, для коммуникации с другими нейронами.

Строение нейрона

Нейрон имеет всего три основные части: аксон, клеточное тело и дендриты. Однако, все нейроны немного различаются по форме, размеру, и характеристиками в зависимости от роли и функции нейрона. У одних нейронов всего несколько ветвей дендритов, другие сильно разветвляются для того, чтобы получать большое количество информации. У одних нейронов короткие аксоны, у других они могут быть достаточно длинными. Самый длинный аксон в человеческом теле тянется от нижней части позвоночника до большого пальца ноги, его длина — приблизительно 0,91 метра (3 фута)!

Больше о строении нейрона

Потенциал действия

Как нейроны посылают и воспринимают информацию? Чтобы нейроны сообщались, им необходимо передавать информацию и в самом нейроне, и от нейрона к следующему нейрону. Для этого процесса используются и электрические сигналы, и химические передатчики.

Дендриты воспринимают информацию от сенсорных рецепторов или других нейронов. Затем эта информация посылается в клеточное тело и на аксон. Как только эта информация покидает аксон, она передвигается по всей длине аксона, с помощью электрического сигнала, называемого потенциал действия.

Связь между синапсами

Сразу как электрический импульс достигает аксона, информация должна быть подана дендритам прилегающего нейрона через синаптическую щель к. В некоторых случаях, электрический сигнал может преодолеть щель между нейронами почти мгновенно и продолжить свое движение.

В других случаях, нейромедиаторам нужно передать информацию от одного нейрона к следующему. Нейромедиаторы — это химические передатчики, которые выпускаются из аксонов для пересечения синаптической щели и достигают рецепторов других нейронов. В процессе, называемом «обратный захват», нейромедиаторы прикрепляются к рецептору и абсорбируются нейроном для повторного использования.

Нейромедиаторы

Нейромедиаторы — это неотъемлемая часть нашего ежедневного функционирования. Пока что точно неизвестно сколько существует нейромедиаторов, но ученые нашли уже более сотни этих химических передатчиков.

Какой эффект каждый из нейромедиаторов оказывает на тело? Что случается, когда болезнь или медицинские препараты сталкиваются с этими химическими передатчиками? Перечислим некоторые главные нейромедиаторы, их известные эффекты и заболевания, связанные с ними.

Ацетилхолин: Отвечает за память, мышечные сокращения и способность усваивать информацию. Отсутствие ацетилхолина в мозгу приводит к болезни Альцгеймера.

Эндорфины: Отвечают за ощущение боли и эмоции. Тело высвобождает эндорфины в случае страха или травмы. Эти химические передатчики схожи с опиатами, такими как морфий, но эндорфины значительно сильней.

Дофамин (допамин): Связан с приятными чувствами и мышлением. Болезнь Паркинсона связана с дефицитом дофамина, тогда как шизофрения тесно сопряжена с чрезмерным количеством этого химического передатчика.

Законы проведения возбуждения по нервному волокну

Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые.

Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декрементное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к «—». В месте выхода кругового тока повышается проницаемость плазматической мембраны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона.

В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Сальтаторный способ распространения возбуждения экономичен, и скорость распространения возбуждения гораздо выше (70—120 м/с), чем по безмиелиновым нервным волокнам (0,5–2 м/с).

Существует три закона проведения раздражения по нервному волокну.

Закон анатомо-физиологической целостности.

Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность. При нарушении физиологических свойств нервного волокна путем охлаждения, применения различных наркотических средств, сдавливания, а также порезами и повреждениями анатомической целостности проведение нервного импульса по нему будет невозможно.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...