Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Какие ошибки не обнаруживаются транслятором?

65.

С х е м а И

Схема И реализует конъюнкцию двух или более логических значений.

Условное обозначение на структурных схемах схемы И с двумя входами представлено на рис. 5.1. Таблица истинности — в таблице 5.1.

Рис. 5.1

 

Таблица 5.1

x y x Ù y
     
     
     
     

 

Единица на выходе схемы “ И” будет тогда и только тогда, когда на всех входах будут единицы.

Когда хотя бы на одном входе будет ноль, на выходе также будет ноль.

Связь между выходом z этой схемы и входами x и y описывается соотношением : z = x Ù y (читается как " x и y").

Операция конъюнкции на функциональных схемах обозначается знаком “&” (читается как "амперсэнд"), являющимся сокращенной записью английского слова and.

С х е м а ИЛИ

Схема ИЛИ реализует операцию дизъюнкцию для двух или более логических значений.

Когда хотя бы на одном входе схемы ИЛИ будет единица, на её выходе также будет единица.

Условное обозначение схемы ИЛИ представлено на рис. 5.2. Значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1.

Связь между выходом z этой схемы и входами x и y описывается соотношением: z = x Ú y (читается как " x или y "). Таблица истинности — в табл. 5.2.

Рис. 5.2

Таблица 5.2

x y x Ú y
     
     
     
     

С х е м а НЕ

Схема НЕ (инвертор) реализует операцию отрицания. Связь между входом x этой схемы и выходом z можно записать соотношением z = , где читается, как " не x " или " инверсия х ".

Правило: Если на входе схемы 0, то на выходе 1; и наоборот, когда на входе 1, на выходе 0.

Условное обозначение инвертора - на рисунке 5.3, а таблица истинности - в табл. 5.3

Рис. 5.3

 

Таблица 5.3

X
   
   

68.

С х е м а И – НЕ

Схема И-НЕ состоит из элемента И и инвертора и осуществляет отрицание результата схемы И.

Связь между выходом z и входами x и y схемы записывают следующей формулой: z = , где читается как " инверсия x и y ".

Условное обозначение схемы И-НЕ представлено на рисунке 5.4.

Таблица истинности схемы И-НЕ — в табл. 5.4.

 

Рис. 5.4

 

Таблица 5.4

x y
     
     
     
     

С х е м а ИЛИ – НЕ

Схема ИЛИ-НЕ состоит из элемента ИЛИ и инвертора и осуществляет отрицание результата схемы ИЛИ.

Связь между выходом z и входами x и y схемы записывают следующим образом: z = , где, читается как " инверсия x или y ". Условное обозначение схемы ИЛИ-НЕ представлено на рис. 5.5.

Таблица истинности схемы ИЛИ-НЕ — в табл. 5.5.


Рис. 5.5

 

Таблица 5.5

x y
     
     
     
     

66.

Триггер — это электронная схема, применяемая в регистрах компьютера для запоминания одного разряда двоичного кода. Триггер имеет два устойчивых состояния, одно из которых соответствует двоичной единице, а другое — двоичному нулю.

Термин триггер в схемах имеет название f lip-flop, что в переводе означает “хлопанье”. Самый распространённый тип триггера — так называемый RS -триггер (S и R, соответственно, от английских set — установка, и reset — сброс). Условное обозначение триггера в схемах — на рис. 5.6.

Рис. 5.6

Он имеет два симметричных входа S и R и два симметричных выхода Q и ┐ Q, причем выходной сигнал ┐ Q является логическим отрицанием сигнала Q.

На каждый из двух входов S и R могут подаваться входные сигналы в виде кратковременных импульсов.

Наличие импульса на входе будем считать единицей, а его отсутствие — нулем.

На рис. 5.7 показана реализация триггера с помощью двух вентилей ИЛИ-НЕ и соответствующая таблица истинности.

S R Q Ø Q
    запрещено
       
       
    обнуление бита

 

Рис. 5.7

 

Проанализируем возможные комбинации значений входов R и S триггера, используя его схему и таблицу истинности схемы ИЛИ-НЕ (табл. 5.5).

1. Если на входы триггера подать S =“1”, R =“0”, то (независимо от начального состояния) на выходе Q верхнего вентиля появится “0”. После этого на входах нижнего вентиля окажется R = “0”, Q =“0” и выход станет равным “1”.

2. Точно так же при подаче “0” на вход S и “1” на вход R на выходе появится “0”, а на Q =“1”.

3. Если на входы R и S поданы логические “1”, то состояние Q и не меняется.

Подача на оба входа R и S логического “0” может привести к неоднозначному результату, поэтому такая комбинация для входных сигналов запрещена.

Поскольку один триггер может запомнить только один разряд двоичного кода, то для запоминания байта нужно 8 триггеров, для запоминания килобайта, соответственно, 8 • 210 = 8192 триггеров.

Современные микросхемы памяти содержат миллионы триггеров.

67.

Сумматор — это электронная логическая схема, выполняющая суммирование двоичных чисел.

Сумматор служит центральным узлом арифметико - логического устройства компьютера – АЛУ.

Многоразрядный двоичный сумматор предназначен для сложения многоразрядных двоичных чисел и представляет собой комбинацию одноразрядных сумматоров, с рассмотрения которых мы и начнём. Условное обозначение (принятое в схемах) одноразрядного сумматора приведено на рис. 5.8.

Рис. 5.8

При сложении двух чисел a и b в одном i -ом разряде приходится иметь дело с тремя цифрами:

1. цифра ai первого слагаемого;

2. цифра b i второго слагаемого;

3. перенос цифры pi–1 из младшего разряда в старший разряд.

 

В результате сложения получаются две цифры c и q:

1. цифра ci для суммы данного i -го разряда;

2. цифра q i - перенос цифры p i из данного i -го разряда в старший i +1 разряд.

 

Таким образом, одноразрядный двоичный сумматор есть устройство с тремя входами и двумя выходами, работа которого может быть описана следующей таблицей истинности:

 

Входы Выходы
Первое слагаемое Второе слагаемое Перенос p i-1 Сумма c i Перенос p i
         
         
         
         
         
         
         
         

 

Если требуется складывать двоичные числа длиной два и более бит, то можно использовать последовательное соединение таких сумматоров, причём для двух соседних сумматоров выход переноса одного сумматора является входом для другого.

 

68.

Решение задач с помощью компьютера включает в себя следующие основные этапы, часть из которых осуществляется без участия компьютера.

  1. Постановка задачи:
    • сбоp инфоpмации о задаче;
    • фоpмулиpовка условия задачи;
    • опpеделение конечных целей pешения задачи;
    • определение формы выдачи результатов;
    • описание данных (их типов, диапазонов величин, структуры и т.п.).
  2. Анализ и исследование задачи, модели:
    • анализ существующих аналогов;
    • анализ технических и программных средств;
    • pазpаботка математической модели;
    • разработка структур данных.
  3. Разработка алгоритма:
    • выбор метода проектирования алгоритма;
    • выбор формы записи алгоритма (блок-схемы, псевдокод и др.);
    • выбоp тестов и метода тестиpования;
    • проектирование алгоритма.
  4. Пpогpаммиpование:
    • выбор языка программирования;
    • уточнение способов организации данных;
    • запись алгоpитма на выбpанном языке пpогpаммиpования.
  5. Тестиpование и отладка:
    • синтаксическая отладка;
    • отладка семантики и логической стpуктуpы;
    • тестовые pасчеты и анализ pезультатов тестиpования;
    • совершенствование пpогpаммы.
  6. Анализ результатов решения задачи и уточнение в случае необходимости математической модели с повторным выполнением этапов 2 - 5.
  7. Сопровождение программы:
    • доработка программы для решения конкретных задач;
    • составление документации к pешенной задаче, к математической модели, к алгоpитму, к пpогpамме, к набору тестов, к использованию.

69.

Математическая модель — это система математических соотношений — формул, уравнений, неравенств и т.д., отражающих существенные свойства объекта или явления.

Всякое явление природы бесконечно в своей сложности. Проиллюстрируем это с помощью примера, взятого из книги В.Н. Тростникова "Человек и информация" (Издательство "Наука", 1970).

... Обыватель формулирует математику задачу следующим образом: "Сколько времени будет падать камень с высоты 200 метров?" Математик начнет создавать свой вариант задачи приблизительно так: "Будем считать, что камень падает в пустоте и что ускорение силы тяжести 9,8 метра в секунду за секунду. Тогда..."

Позвольте, — может сказать "заказчик", — меня не устраивает такое упрощение. Я хочу знать точно, сколько времени будет падать камень в реальных условиях, а не в несуществующей пустоте.

Хорошо, — согласится математик. — Будем считать, что камень имеет сферическую форму и диаметр... Какого примерно он диаметра?

Около пяти сантиметров. Но он вовсе не сферический, а продолговатый.

Тогда будем считать, что он имеет форму эллипсоида с полуосями четыре, три и три сантиметра и что он падает так, что большая полуось все время остается вертикальной. Давление воздуха примем равным 760 мм ртутного столба, отсюда найдем плотность воздуха...

Если тот, кто поставил задачу на "человеческом" языке не будет дальше вмешиваться в ход мысли математика, то последний через некоторое время даст численный ответ. Но "потребитель" может возражать по-прежнему: камень на самом деле вовсе не эллипсоидальный, давление воздуха в том месте и в тот момент не было равно 760 мм ртутного столба и т.д. Что же ответит ему математик?

Он ответит, что точное решение реальной задачи вообще невозможно. Мало того, что форму камня, которая влияет на сопротивление воздуха, невозможно описать никаким математическим уравнением; его вращение в полете также неподвластно математике из-за своей сложности. Далее, воздух не является однородным, так как в результате действия случайных факторов в нем возникают флуктуации колебания плотности. Если пойти ещё глубже, нужно учесть, что по закону всемирного тяготения каждое тело действует на каждое другое тело. Отсюда следует, что даже маятник настенных часов изменяет своим движением траекторию камня.

Короче говоря, если мы всерьез захотим точно исследовать поведение какого-либо предмета, то нам предварительно придется узнать местонахождение и скорость всех остальных предметов Вселенной. А это, разумеется. невозможно.

Чтобы описать явление, необходимо выявить самые существенные его свойства, закономерности, внутренние связи, роль отдельных характеристик явления. Выделив наиболее важные факторы, можно пренебречь менее существенными.

Наиболее эффективно математическую модель можно реализовать на компьютере в виде алгоритмической модели — так называемого "вычислительного эксперимента" (см. [1], параграф 26).

Конечно, результаты вычислительного эксперимента могут оказаться и не соответствующими действительности, если в модели не будут учтены какие-то важные стороны действительности.

Итак, создавая математическую модель для решения задачи, нужно:

  1. выделить предположения, на которых будет основываться математическая модель;
  2. определить, что считать исходными данными и результатами;
  3. записать математические соотношения, связывающие результаты с исходными данными.

При построении математических моделей далеко не всегда удается найти формулы, явно выражающие искомые величины через данные. В таких случаях используются математические методы, позволяющие дать ответы той или иной степени точности.

Существует не только математическое моделирование какого-либо явления, но и визуально-натурное моделирование, которое обеспечивается за счет отображения этих явлений средствами машинной графики, т.е. перед исследователем демонстрируется своеобразный "компьютерный мультфильм", снимаемый в реальном масштабе времени. Наглядность здесь очень высока.

70. Текст программы можно проконтролировать за столом с помощью просмотра, проверки и прокрутки.

  • Просмотр. Текст программы просматривается на предмет обнаружения описок и расхождений с алгоритмом. Нужно просмотреть организацию всех циклов, чтобы убедиться в правильности операторов, задающих кратности циклов. Полезно посмотреть еще раз условия в условных операторах,аргументы в обращениях к подпрограммам и т.п.
  • Проверка. При проверке программы программист по тексту программы мысленно старается восстановить тот вычислительный процесс, который определяет программа, после чего сверяет его с требуемым процессом. На время проверки нужно "забыть", что должна делать программа, и "узнавать" об этом по ходу её проверки. Только после окончания проверки программы можно "вспомнить" о том, что она должна делать и сравнить реальные действия программы с требуемыми.
  • Прокрутка. Основой прокрутки является имитация программистом за столом выполнения программы на машине. Для выполнения прокрутки приходится задаваться какими-то исходными данными и производить над ними необходимые вычисления. Прокрутка — трудоемкий процесс, поэтому ее следует применять лишь для контроля логически сложных участков программ. Исходные данные должны выбираться такими, чтобы в прокрутку вовлекалось большинство ветвей программы.
Отладка программы — это процесс поиска и устранения ошибок в программе, производимый по результатам её прогона на компьютере.

 

Тестирование — это испытание, проверка правильности работы программы в целом, либо её составных частей.

Отладка и тестирование (англ. test — испытание) — это два четко различимых и непохожих друг на друга этапа:

  • при отладке происходит локализация и устранение синтаксических ошибок и явных ошибок кодирования;
  • в процессе же тестирования проверяется работоспособность программы, не содержащей явных ошибок.
Тестирование устанавливает факт наличия ошибок, а отладка выясняет ее причину.

Английский термин debugging (" отладка ") буквально означает " вылавливание жучков ". Термин появился в 1945 г., когда один из первых компьютеров — "Марк-1" прекратил работу из-за того, что в его электрические цепи попал мотылек и заблокировал своими останками одно из тысяч реле машины.

В современных программных системах (Turbo Basic, Turbo Pascal, Turbo C и др.) отладка осуществляется часто с использованием специальных программных средств, называемых отладчиками. Эти средства позволяют исследовать внутреннее поведение программы.

Программа-отладчик обычно обеспечивает следующие возможности:

  • пошаговое исполнение программы с остановкой после каждой команды (оператора);
  • просмотр текущего значения любой переменной или нахождение значения любого выражения, в том числе, с использованием стандартных функций; при необходимости можно установить новое значение переменной;
  • установку в программе "контрольных точек", т.е. точек, в которых программа временно прекращает свое выполнение, так что можно оценить промежуточные результаты, и др.

При отладке программ важно помнить следующее:

  • в начале процесса отладки надо использовать простые тестовые данные;
  • возникающие затруднения следует четко разделять и устранять строго поочередно;
  • не нужно считать причиной ошибок машину, так как современные машины и трансляторы обладают чрезвычайно высокой надежностью.

71. Как бы ни была тщательно отлажена программа, решающим этапом, устанавливающим ее пригодность для работы, является контроль программы по результатам ее выполнения на системе тестов.

Программу условно можно считать правильной, если её запуск для выбранной системы тестовых исходных данных во всех случаях дает правильные результаты.

Но, как справедливо указывал известный теоретик программирования Э. Дейкстра, тестирование можетпоказать лишь наличие ошибок, но не их отсутствие. Нередки случаи, когда новые входные данные вызывают "отказ" или получение неверных результатов работы программы, которая считалась полностью отлаженной.

Для реализации метода тестов должны быть изготовлены или заранее известны эталонные результаты.

Вычислять эталонные результаты нужно обязательно до, а не после получения машинных результатов.

В противном случае имеется опасность невольной подгонки вычисляемых значений под желаемые, полученные ранее на машине.

Тестовые данные должны обеспечить проверку всех возможных условий возникновения ошибок:

  • должна быть испытана каждая ветвь алгоритма;
  • очередной тестовый прогон должен контролировать нечто такое, что еще не было проверено на предыдущих прогонах;
  • первый тест должен быть максимально прост, чтобы проверить, работает ли программа вообще;
  • арифметические операции в тестах должны предельно упрощаться для уменьшения объема вычислений;
  • количества элементов последовательностей, точность для итерационных вычислений, количество проходов цикла в тестовых примерах должны задаваться из соображений сокращения объема вычислений;
  • минимизация вычислений не должна снижать надежности контроля;
  • тестирование должно быть целенаправленным и систематизированным, так как случайный выбор исходных данных привел бы к трудностям в определении ручным способом ожидаемых результатов; кроме того, при случайном выборе тестовых данных могут оказаться непроверенными многие ситуации;
  • усложнение тестовых данных должно происходить постепенно.

Пример. Система тестов для задачи нахождения корней квадратного уравнения ax2 + bx + c = 0:

Номер теста Проверяемый случай Коэффициенты Результаты
a b c
  d > 0     -2 x1 = 1, x2 = -2
  d = 0       Корни равны: x1 = -1, x2 = -1
  d < 0       Действительных корней нет
  a = 0, b = 0, c = 0       Все коэффициенты равны нулю. x — любое число
  a = 0, b = 0, c ¹ 0       Неправильное уравнение
  a = 0, b ¹ 0       Линейное уравнение; один корень: x = -0.5
  a ¹ 0, b ¹ 0, c = 0       x1 = 0, x2 = -0.5

Процесс тестирования можно разделить на три этапа.

Проверка в нормальных условиях.
Предполагает тестирование на основе данных, которые характерны для реальных условий функционирования программы.

Проверка в экстремальных условиях.
Тестовые данные включают граничные значения области изменения входных переменных, которые должны восприниматься программой как правильные данные. Типичными примерами таких значений являются очень маленькие или очень большие числа и отсутствие данных.
Еще один тип экстрем аьных условий — это граничные объемы данных, когда массивы состоят из слишком малого или слишком большого числа элементов.

Проверка в исключительных ситуациях.
Проводится с использованием данных, значения которых лежат за пределами допустимой области изменений.

Известно, что все программы разрабатываются в расчете на обработку какого-то ограниченного набора данных.

Наихудшая ситуация складывается тогда, когда программа воспринимает неверные данные как правильные и выдает неверный, но правдоподобный результат.

Программа должна сама отвергать любые данные, которые она не в состоянии обрабатывать правильно.

72. Ошибки могут быть допущены на всех этапах решения задачи — от ее постановки до оформления. Разновидности ошибок и соответствующие примеры приведены в таблице:

Вид ошибки Пример
Неправильная постановка задачи Правильное решение неверно сформулированной задачи
Неверный алгоритм Выбор алгоритма, приводящего к неточному или эффективному решению задачи
Ошибка анализа Неполный учет ситуаций, которые могут возникнуть; логические ошибки
Семантические ошибки Непонимание порядка выполнения оператора
Синтаксические ошибки Нарушение правил, определяемых языком программирования
Ошибки при выполнении операций Слишком большое число, деление на ноль, извлечение квадратного корня из отрицательного числа и т. п.
Ошибки в данных Неудачное определение возможного диапазона изменения данных
Опечатки Перепутаны близкие по написанию символы, например, цифра 1 и буквы I, l
Ошибки ввода-вывода Неверное считывание входных данных, неверное задание форматов данных

Обычно синтаксические ошибки выявляются на этапе трансляции. Многие же другие ошибки транслятору выявить невозможно, так как транслятору неизвестны замыслы программиста.

Отсутствие сообщений машины о синтаксических ошибках является необходимым, но не достаточным условием, чтобы считать программу правильной.

Примеры синтаксических ошибок:

  • пропуск знака пунктуации;
  • несогласованность скобок;
  • неправильное формирование оператора;
  • неверное образование имен переменных;
  • неверное написание служебных слов;
  • отсутствие условий окончания цикла;
  • отсутствие описания массива и т.п.

Какие ошибки не обнаруживаются транслятором?

Существует множество ошибок, которые транслятор выявить не в состоянии, если используемые в программе операторы сформированы верно.

Примеры таких ошибок.

Логические ошибки:

  • неверное указание ветви алгоритма после проверки некоторого условия;
  • неполный учет возможных условий;
  • пропуск в программе одного или более блоков алгоритма.

Ошибки в циклах:

  • неправильное указание начала цикла;
  • неправильное указание условий окончания цикла;
  • неправильное указание числа повторений цикла;
  • бесконечный цикл.

Ошибки ввода-вывода; ошибки при работе с данными:

  • неправильное задание тип данных;
  • организация считывания меньшего или большего объёма даных, чем требуется;
  • неправильное редактирование данных.

Ошибки в использов нии переменных:

  • использование переменных без указания их начальных значений;
  • ошибочное указание одной переменной вместо другой.

Ошибки при работе с массивами:

  • массивы предварительно не обнулены;
  • массивы неправильно описаны;
  • индексы следуют в неправильном порядке.

Ошибки арифметических операций:

  • неверное указание типа переменной (например, целочисленного вместо вещественного);
  • неверное определение порядка действий;
  • деление на нуль;
  • извлечение квадратного корня из отрицательного числа;
  • потеря значащих разрядов числа.

Эти ошибки обнаруживаются с помощью тестирования

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...