Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Обезвреживание активных форм кислорода в эритроцитах




Высокое содержание О2 в эритроцитах является причиной образования большого количества активных форм кислорода. Постоянным источником активных форм кислорода в эритроцитах является неферментативное окисление гемоглобина в метгемоглобин: 1). Hb (Fe2+) ® Met Hb (Fe3+) +e- 2). e- + O2 → О 2

Также СРО в эритроците стимулируют различные окислители - нитраты, сульфаниламиды, противомалярийное лекарство примахин.

Образующиеся активные формы кислорода запускают реакции СРО, которые приводят к разрушению липидов, белков, углеводов и др. органических молекул и являются причиной старения и гемолиза эритроцита.

Для сдерживания СРО в эритроците функционирует ферментативная антиоксидантная система. Для ее работы необходим глутатион и НАДФН2.

Супероксиддисмутаза (Cu2+ и Zn2+) превращает супероксидные анионы в перекись водорода: 2О 2 + 2H+ → H2O2+ O2

Каталаза - геминовый фермент, разрушает перекись водорода до воды и кислорода: 2Н2О2 → H2O+ O2

Глутатионпероксидаза (селен) при окислении глутатиона разрушает перекись водорода и гидроперекиси липидов до воды:

Н2О2 + 2 GSH → 2 Н2О + G-S-S-G.

Глутатионредуктаза восстанавливает окисленный глутатион с участием НАДФН2:

GS-SG + НАДФН2 → 2 GSH + НАДФ+.

Недостаток глутатиона и НАДФН2 в эритроцитах приводит к снижению АОА, активации ПОЛ и может стать причиной гемолитической анемии. Различные окислители - нитраты, сульфаниламиды, противомалярийное лекарство примахин, усиливают гемолиз эритроцитов.

Дефицитглутатиона может быть обусловлен действием токсических веществ, например ионами тяжелых металлов или наследственным недостатком глутатионредуктазы.

Дефицит НАДФН2 возникает при наследственной недостаточности (аутосомно-рецессивный тип) первого фермента ПФШ глюкозо–6–фосфатдегидрогеназы. Не менее 100 млн человек являются носителями около 3000 генетических дефек­тов глюкозо-6-фосфатдегидрогеназы.

Для оценки эффективности работы антиоксидантных систем определяют перекисную резистентность эритроцитов.

 

Обмен метгемоглобина

В течение суток до 3% гемоглобина может спонтанно окисляться в метгемоглобин:

Hb (Fe2+) ® Met Hb (Fe3+) +e-

Восстановление метгемоглобина до гемоглобина осуществляет метгемоглобинредуктазная система. Она состоит из цитохрома b5 и цитохром b5 редуктазы (флавопротеин), донором водорода служит НАДН2, образующийся в гликолизе.

1). Цитохром b5 восстанавливает Fe3+ метгемоглобина в Fe2+ гемоглобина:

MetHb(Fe3+) + цитb5 восст → Hb(Fe2+) + цит b5 окисл

2). Окисленный Цитохром b5 восстанавливается цитохром b5 редуктазой:

цит b5 окисл + НАДН2 → цитb5 восст + НАД+

Восстановление метгемоглобина может осуществляться также неферментативным путём, например, за счёт витамина В12, аскорбиновой кислоты или глутатиона.

У здорового человека концентрация метгемоглобина в крови не превышает 1%.

Генетический дефект ферментов гли­колиза и метгемоглобинредуктазной системы приводит к накоп­лению метгемоглобина и увеличению образо­вания активных форм кислорода. Активные формы кислорода вызывают образование дисульфидных мостиков между протомерами метгемоглобина, что приводит к их агрегации с образованием телец Хайнца. Последние способствуют разрушению эритроцитов при попадании их в мелкие капилляры. Накопление метгемоглобина в крови из-за нарушения транспорта кислорода ведет к гипоксии.

Дифосфоглицератный шунт

Кроме традиционного ПФШ, у гликолиза эритроцитов многих млекопитающих есть свой специфический шунт - 2,3–дифосфоглицератный.

В эритроцитах имеется дифосфоглицератмутаза, которая позволяет обходить в гликолизе фосфоглицераткиназную реакцию. Дифосфоглицератмутаза катализирует превращение 1,3–ФГК в 2,3–ФГК. Ее стимулирует дефицит кислорода. В условиях гипоксии до 20% глюкозы идет по этому пути. Образующаяся 2,3–ФГК встраивается в молекулу гемоглобина и аллостерически уменьшает его сродство к кислороду. Кривая диссоциации оксигемоглобина смещается вправо, что способствует переходу кислорода из оксигемоглобина в ткани.

Под действием 2,3–дифосфоглицератфосфатазы (принято считать, что этой активностью обладает фосфоглицератмутаза) 2,3–ФГК превращается в 3–ФГК, которая возвращается в реакции гликолиза.

При 2,3–дифосфоглицератном шунте в гликолизе не синтезируется АТФ, а свободная энергия 1,3–ФГК, рассеивается в форме теплоты. В этом может заключаться определённое преимущество, поскольку даже в тех случаях, когда потребности в АТФ минимальны, гликолиз может продолжаться.

 

Образование эритроцитов

Эритроциты, так же как и другие клетки крови, образуются из полипотентных стволовых клеток костного мозга. Стволовая клетка превращается в эритроцит за две недели.

Размножение и превращение начальной клет­ки эритроидного ряда в унипотентную стиму­лирует ростовой фактор интерлейкин-3 (цитокин), который синтезируется Т-лимфоцитами и клетками костного мозга.

Дальнейшую пролиферацию и дифференцировку унипотентной клетки эритроидного ряда регулирует гормон эритропоэтин, который синтезируется в почках. Образование эритропоэтина в почках стимулирует недостаток кислорода. Хроническая почечная недоста­точность подавляет образова­ние эритропоэтина, что ведет к развитию анемии.

На стадии эритробласта происходят интенсивный синтез гемог­лобина, конденсация хроматина, уменьшение размера ядра и его удаление. Образующийся ретикулоцит ещё содержит глобиновую мРНК и активно синтезирует гемоглобин. Циркули­рующие в крови ретикулоциты лишаются ри­босом, ЭР, митохондрий и в течение двух суток превращаются в эритроциты.

 

Стволовая кроветворная клетка

(предшественница всех форменных элементов крови)

Полипотентная клетка-предшественница миелопоэза

(может дифференцироваться в любую клетку миелоидного ряда: эритроцит, эозинофил, базофил, нейтрофил, моноцит, тромбоцит)

Взрывообразующая единица эритроидного ряда

(начальная клетка, вступившая на путь эритролоэза, отделена от конечной стадии дифференцировки 12 делениями)

Интерлейкин-3 →↓

Унипотентная клетка-предшественник эритроцитов

(клетка, способная дифференцироваться только в одном направлении)

Эритропоэтин →↓

Проэритробласт и эритробласт

Ретикулоцит

Эритроцит

Количество эритроцитов

Организм взрослого человека содержит около 25*1012 эритроцитов.

Концентрация эритроцитов у мужчины составляет 3,9*1012 - 5,5*1012 /л, у женщины - 3,7*1012 - 4,9*1012/л.

Более высокое содержание эритроцитов у мужчин обусловлено стимулирующим эритропоэз влиянием андрогенов. Женские половые гормоны, наоборот тормозят эритропоэз.

Увеличение числа эритроцитов называют эритроцитозом (эритремией), а уменьшение - эритропенией (анемией). Они бывают абсолютными и относительными.

Абсолютный эритроцитоз (увеличение числа эритроцитов в организме) - наблюдается при снижении барометрического давления (на высокогорье), у больных с хроническими заболеваниями лёгких и сердца вследствие гипоксии, которая стимулирует эритропэз.

Относительный эритроцитоз (увеличение числа эритроцитов в единице объёма крови без увеличения их общего количества в организме) - наблюдается при сгущении крови (при обильном потении, ожогах, холере и дизентерии). Он возникает также при тяжёлой мышечной работе вследствие выброса эритроцитов из кровяного депо.

Абсолютная эритропения развивается вследствие пониженного образования, усиленного разрушения эритроцитов или после кровопотери.

Относительная эритропения возникает при разжижении крови за счёт быстрого увеличения жидкости в кровотоке.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...