Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Быстродействие запоминающих устройств




Оперативная память. Различие модулей памяти. КЭШ-память.

 

Оперативная память — это рабочая область для процессора компьютера. В ней во время работы хранятся программы и данные. Оперативная память часто рассматривается как временное хранилище, потому что данные и программы в ней сохраняются только при включенном компьютере или до нажатия кнопки сброса (reset). Перед выключением или нажатием кнопки сброса все данные, подвергнутые изменениям во время работы, необходимо сохранить на запоминающем устройстве, которое может хранить информацию постоянно (обычно это жесткий диск). При новом включении питания сохраненная информация вновь может быть загружена в память.

Устройства оперативной памяти иногда называют запоминающими устройствами с произвольным доступом. Это означает, что обращение к данным, хранящимся в оперативной памяти, не зависит от порядка их расположения в ней. Когда говорят о памяти компьютера, обычно подразумевают оперативную память, прежде всего микросхемы памяти или модули, в которых хранятся активные программы и данные, используемые процессором.

За несколько лет понятие RAM (Random Access Memory) превратилось из обычной аббревиатуры в термин, обозначающий основное рабочее пространство памяти, создаваемое микросхемами динамической оперативной памяти (Dynamic RAM — DRAM) и используемое процессором для выполнения программ. Одним из свойств микросхем DRAM (и, следовательно, оперативной памяти в целом) является динамическое хранение данных, что означает, во-первых, возможность многократной записи информации в оперативную память, а во-вторых, необходимость постоянного обновления данных (т.е., в сущности, их перезапись) примерно каждые 15 мс. Также существует так называемая статическая оперативная память (Static RAM — SRAM), не требующая постоянного обновления данных. Следует заметить, что данные сохраняются в оперативной памяти только при включенном питании.

Термин оперативная память часто обозначает не только микросхемы, которые составляют устройства памяти в системе, но включает и такие понятия, как логическое отображение и размещение. Логическое отображение — это способ представления адресов памяти на фактически установленных микросхемах. Размещение — это расположение информации (данных и команд) определенного типа по конкретным адресам памяти системы.

Не стоит путать оперативную память с памятью на диске, поскольку емкость устройств памяти обоих типов выражается в одинаковых единицах — мега- или гигабайтах.

Физически оперативная память в системе представляет собой набор микросхем или модулей, содержащих микросхемы, которые обычно подключаются к системной плате. Эти микросхемы или модули могут иметь различные характеристики и, чтобы функционировать правильно, должны быть совместимы с системой, в которую устанавливаются.

В современных компьютерах используются запоминающие устройства трех основных типов.

· ROM (Read Only Memory). Постоянное запоминающее устройство (ПЗУ), не способное выполнять операцию записи данных.

· DRAM (Dynamic Random Access Memory). Динамическое запоминающее устройство с произвольным порядком выборки.

· SRAM (Static RAM). Статическая оперативная память.

 

Память типа ROM

 

В памяти типа ROM (Read Only Memory), или ПЗУ, данные можно только хранить, изменять их нельзя. Именно поэтому такая память используется только для чтения данных. ROM также часто называется энергонезависимой памятью, потому что любые данные, записанные в нее, сохраняются при выключении питания. Поэтому в ROM помещаются команды запуска персонального компьютера, т.е. программное обеспечение, которое загружает систему.

Заметьте, что ROM и оперативная память — не противоположные понятия. На самом деле ROM представляет собой часть оперативной памяти системы. Другими словами, часть адресного пространства оперативной памяти отводится для ROM. Это необходимо для хранения программного обеспечения, которое позволяет загрузить операционную систему. Основной код BIOS содержится в микросхеме ROM на системной плате, но на платах адаптеров также имеются аналогичные микросхемы. Они содержат вспомогательные подпрограммы базовой системы ввода-вывода и драйверы, необходимые для конкретной платы, особенно для тех плат, которые должны быть активизированы на раннем этапе начальной загрузки, например видеоадаптер.

В настоящее время в большинстве систем используется одна из форм Flash-памяти, которая называется электронно-перепрограммируемой постоянной памятью (Electrically Erasable Programmable Read-only Memory — EEPROM). Flash-память является по-настоящему энергонезависимой и перезаписываемой, она позволяет пользователям легко модифицировать ROM, программно-аппаратные средства системных плат и других компонентов (таких, как видеоадаптеры, платы SCSI, периферийные устройства и т.п.).

 

Память типа DRAM

 

Динамическая оперативная память (Dynamic RAM — DRAM) используется в большинстве систем оперативной памяти современных персональных компьютеров. Основное преимущество памяти этого типа состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большой емкости.

Ячейки памяти в микросхеме DRAM — это крошечные конденсаторы, которые удерживают заряды. Именно так (наличием или отсутствием зарядов) и кодируются биты. Проблемы, связанные с памятью этого типа, вызваны тем, что она динамическая, т.е. должна постоянно регенерироваться, так как в противном случае электрические заряды в конденсаторах памяти будут “стекать” и данные будут потеряны. Регенерация происходит, когда контроллер памяти системы берет крошечный перерыв и обращается ко всем строкам данных в микросхемах памяти. Большинство систем имеют контроллер памяти (обычно встраиваемый в набор микросхем системной платы), который настроен на соответствующую промышленным стандартам частоту регенерации, равную 15 мкс. Ко всем строкам данных обращение осуществляется по прохождении 128 специальных циклов регенерации. Это означает, что каждые 1,92 мс (128,15 мкс) прочитываются все строки в памяти для обеспечения регенерации данных.

Регенерация памяти отнимает время у процессора: каждый цикл регенерации по длительности занимает несколько циклов центрального процессора. В старых компьютерах циклы регенерации могли занимать до 10% (или больше) процессорного времени, но в современных системах, работающих на частотах, равных сотням мегагерц, расходы на регенерацию составляют 1% (или меньше) процессорного времени. Некоторые системы позволяют изменить параметры регенерации с помощью программы установки параметров CMOS, но увеличение времени между циклами регенерации может привести к тому, что в некоторых ячейках памяти заряд стечет, а это вызовет сбои памяти. В большинстве случаев надежнее придерживаться рекомендуемой или заданной по умолчанию частоты регенерации. Поскольку затраты на регенерацию в современных компьютерах составляют менее 1%, изменение частоты регенерации оказывает незначительное влияние на характеристики компьютера. В устройствах DRAM для хранения одного бита используется только один транзистор и пара конденсаторов, поэтому они более вместительны, чем микросхемы других типов памяти.

В настоящее время имеются микросхемы динамической оперативной памяти емкостью 512 Мбайт и больше. Это означает, что подобные микросхемы содержат более 256 млн транзисторов! А ведь Pentium 4 имеет только 42 млн. транзисторов. Дело в том, что в микросхеме памяти все транзисторы и конденсаторы размещаются последовательно, обычно в узлах квадратной решетки, в виде очень простых, периодически повторяющихся структур, в отличие от процессора, представляющего собой более сложную схему различных структур, не имеющую четкой организации.

Транзистор для каждого одноразрядного регистра DRAM используется для чтения состояния смежного конденсатора. Если конденсатор заряжен, в ячейке записана 1; если заряда нет — записан 0. Заряды в крошечных конденсаторах все время стекают, вот почему память должна постоянно регенерироваться. Даже мгновенное прерывание подачи питания или какой-нибудь сбой в циклах регенерации приведет к потере заряда в ячейке DRAM, а следовательно, и к потере данных.

Динамическая оперативная память используется в персональных компьютерах; поскольку она недорогая, микросхемы могут быть плотно упакованы, а это означает, что запоминающее устройство большой емкости может занимать небольшое пространство. К сожалению, память этого типа не отличается высоким быстродействием, обычно она намного “медленнее” процессора. Поэтому существует множество различных типов организации DRAM, позволяющих улучшить эту характеристику.

 

Кэш-память — SRAM

 

Существует тип памяти, совершенно отличный от других, — статическая оперативная память (Static RAM — SRAM). Она названа так потому, что, в отличие от динамической оперативной памяти (DRAM), для сохранения ее содержимого не требуется периодической регенерации. Но это не единственное ее преимущество. SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры. Время доступа SRAM не более 2 нс; это означает, что такая память может работать синхронно с процессорами на частоте 500 МГц или выше. Однако для хранения каждого бита в конструкции SRAM используется кластер из шести транзисторов. Использование транзисторов без каких-либо конденсаторов означает, что нет необходимости в регенерации. (Ведь если нет никаких конденсаторов, то и заряды не теряются.) Пока подается питание, SRAM будет помнить то, что сохранено. Почему же тогда микросхемы SRAM не используются для всей системной памяти? Ответ можно найти в следующей таблице.

По сравнению с динамической оперативной памятью быстродействие SRAM намного выше, но плотность ее намного ниже, а цена довольно высока. Более низкая плотность означает, что микросхемы SRAM имеют большие габариты, хотя их информационная емкость намного меньше. Большое число транзисторов и кластеризованное их размещение не только увеличивает габариты микросхем SRAM, но и значительно повышает стоимость технологического процесса по сравнению с аналогичными параметрами для микросхем DRAM. Например, емкость модуля DRAM может равняться 64 Мбайт или больше, в то время как емкость модуля SRAM приблизительно того же размера составляет только 2 Мбайт, причем их стоимость будет одинаковой. Таким образом, габариты SRAM в среднем в 30 раз превышают размер динамической оперативной памяти, то же самое можно сказать и о стоимости. Все это не позволяет использовать SRAM в качестве оперативной памяти в персональных компьютерах.

Несмотря на это, разработчики все-таки применяют память типа SRAM для повышения эффективности PC. Но во избежание значительного увеличения стоимости устанавливается только небольшой объем высокоскоростной SRAM, которая используется в качестве кэш-памяти. Кэш-память работает на тактовых частотах, близких или даже равных тактовым частотам процессора, причем обычно именно эта память непосредственно используется процессором при чтении и записи. Во время операций чтения данные в высокоскоростную кэш-память предварительно записываются из оперативной памяти с низким быстродействием, т.е. из DRAM.

Эффективность кэш-памяти выражается коэффициентом совпадения, или коэффициентом успеха. Коэффициент совпадения равен отношению количества удачных обращений в кэш к общему количеству обращений. Попадание — это событие, состоящее в том, что необходимые процессору данные предварительно считываются в кэш из оперативной памяти; иначе говоря, в случае попадания процессор может считывать данные из кэш-памяти. Неудачным обращением в кэш считается такое, при котором контроллер кэша не предусмотрел потребности в данных, находящихся по указанному абсолютному адресу.

Для повышения эффективности в более поздних компьютерах на основе процессоров Pentium Pro, Pentium II/III и Athlon кэш-память второго уровня является частью процессора. Конечно же, он внешний по отношению к кристаллу центрального процессора, просто эта отдельная микросхема устанавливается внутри корпуса (картриджа) процессора. Поэтому на системных платах для процессоров Pentium Pro или Pentium II нет никакого кэша. В последних моделях процессоров Pentium и Athlon кэш-память второго уровня является частью микросхемы процессора (подобно кэш-памяти первого уровня) и работает на более высоких частотах (на частоте процессора, половинной или трети). В процессорах Itanium для увеличения производительности используется три уровня кэш-памяти.

Контроллер кэш-памяти для современной системы содержится в микросхеме North Bridge набора микросхем системной логики в PC на основе Pentium и более простых или на плате процессора, как в случае с Pentium Pro, Pentium II/III и более новыми системами. Возможности контроллера кэш-памяти предопределяют эффективность и возможности кэш-памяти. Важная особенность состоит в том, что большинство контроллеров кэш-памяти имеют ограничение на объем кэшируемой памяти. Часто этот предел может быть очень низок, как в случае набора микросхем системной логики 430TX для компьютеров на основе Pentium.

Быстродействие запоминающих устройств

 

Быстродействие процессора выражается в мегагерцах (МГц), а быстродействие запоминающего устройства и его эффективность — в наносекундах (нс).

Наносекунда — это одна миллиардная доля секунды, т.е. очень короткий промежуток времени. Заметьте, что скорость света в вакууме равна 299 792 километра в секунду. За одну миллиардную долю секунды световой луч проходит расстояние, равное всего лишь 29,98 сантиметра, т.е. меньше длины обычной линейки!

Быстродействие процессоров и микросхем выражается в мегагерцах (МГц), т.е. в миллионах циклов, выполняемых в течение одной секунды. Рабочая частота современных процессоров достигает 2000 и более МГц (2 ГГц, или двух миллиардов циклов в секунду), а вскоре, как ожидается, возрастет до 3 или 4 ГГц.

 

Оперативная память EDO

 

Память типа EDO (Extended Data Out) была разработана и запатентована компанией Micron Technology. Память EDO собирается из специально изготовленных микросхем, которые учитывают перекрытие синхронизации между очередными операциями доступа. Как следует из названия — драйверы вывода данных на микросхеме не выключаются, когда контроллер памяти удаляет столбец адреса в начале следующего цикла. Это позволяет совместить (по времени) следующий цикл с предыдущим, экономя приблизительно 10 нс в каждом цикле.

Таким образом, контроллер памяти EDO может начать выполнение новой команды выборки столбца адреса, а данные будут считываться по текущему адресу. Это почти идентично использованию различных банков для чередования памяти, но, в отличие от чередования, не нужно одновременно устанавливать два идентичных банка памяти в системе.

Для того чтобы использовать память EDO, набор микросхем системной логики на системной плате должен поддерживать ее. Большинство подобных наборов микросхем. Оперативная память EDO идеальна для систем с быстродействием шины до 66 МГц. Такие шины в персональных компьютерах использовались до 1997 года включительно; однако в течение 1998 года память EDO была заменена более новой и быстрой памятью SDRAM (Synchronous DRAM — синхронная DRAM). Эта новая архитектура стала новым стандартом оперативной памяти персонального компьютера.

 

Burst EDO

 

Память Burst Extended-Data-Out Dynamic Random Access Memory (Burst EDO, BEDO DRAM) является разновидностью памяти EDO. Это в основном та же память, что и EDO, но с еще более быстрой передачей данных. К сожалению, только один набор микросхем системной логики (Intel 440FX Natoma) поддерживал ее, и она была быстро заменена памятью SDRAM, которая поддерживается в подавляющем большинстве наборов микросхем. Память BEDO в настоящее время не используется и не производится.

 

SDRAM

 

Это тип динамической оперативной памяти DRAM, работа которой синхронизируется с шиной памяти. SDRAM (Synchronous DRAM) передает информацию в высокоскоростных пакетах, использующих высокоскоростной синхронизированный интерфейс. SDRAM позволяет избежать использования большинства циклов ожидания, необходимых при работе асинхронной DRAM, поскольку сигналы, по которым работает память такого типа, синхронизированы с тактовым генератором системной платы.

Как и для оперативной памяти EDO, для памяти этого типа требуется поддержка набором микросхем системной логики. Многие наборы микросхем системной логики поддерживают SDRAM; это самый популярный тип памяти для новых систем. SDRAM хорошо подходит для архитектуры Pentium II/III и новых высокоэффективных системных плат.

Эффективность SDRAM значительно выше по сравнению с оперативной памятью EDO. Поскольку SDRAM — это тип динамической оперативной памяти, ее начальное время ожидания такое же, как у EDO, но общее время цикла намного короче. Кроме этого, память SDRAM может работать на частоте 100 МГц (10 нс) и выше, что стало новым стандартом для системного быстродействия начиная с 1998 года. Обновления SDRAM поддерживают рабочую частоту 133 МГц (согласно спецификации PC133).

Память SDRAM поставляется в виде модулей DIMM и, как правило, ее быстродействие оценивается в мегагерцах, а не в наносекундах. Хотя быстродействие SDRAM существенно выше, чем у памяти предшествующих типов, стоит она не намного дороже, поэтому ей и удалось так быстро завоевать твердые позиции на рынке PC.

 

DDR SDRAM

 

Память DDR (Double Data Rate — двойная скорость передачи данных) — это еще более усовершенствованный стандарт SDRAM, при использовании которого скорость передачи данных удваивается. Это достигается не за счет удвоения тактовой частоты, а за счет передачи данных дважды за один цикл: первый раз в начале цикла, а второй — в конце. Именно благодаря этому и удваивается скорость передачи (причем используются те же самые частоты и синхронизирующие сигналы).

В основном память DDR SDRAM используется в системах, оснащенных процессорами компаний AMD и Cyrix. Память DDR SDRAM выпускается в виде 184-контактных модулей DIMM (рис. 1).

Модули DIMM памяти DDR SDRAM выпускаются в соответствии со спецификациями PC1600 (200 МГц х 8) или PC2100 (266 МГц х 8) и обычно работают при напряжении 2,5 В. Они представляют собой, в сущности, расширение модулей DIMM памяти PC100 или PC133 и предназначены для поддержки удвоенной синхронизации, при которой передача данных, в отличие от стандарта SDRAM, происходит при каждом тактовом переходе (дважды за один цикл).

 

Рис. 1. 184-контактный модуль DIMM памяти DDR SDRAM

 

RDRAM

 

Радикально новый тип памяти RDRAM, или Rambus DRAM, используется в высокопроизводительных персональных компьютерах. Такая память непосредственно поддерживается в наборах микросхем системной логики. Аналогичный тип памяти уже использовался в игровых приставках — в популярной модели Nintendo 64.

Обычные типы памяти (ЕDO и SDRAM) иногда называют устройствами с широким каналом. Ширина канала памяти равна ширине шины данных процессора (в системах Pentium — 64 бит). Максимальная производительность памяти SDRAM в исполнении DIMM составляет 100х8 (частота х количество передаваемых данных за один такт), или 800 Мбайт/с.

В то же время память RDRAM является устройством с узким каналом передачи данных. Количество данных, передаваемых за один такт, достигает только 16 бит (2 байт), не считая двух дополнительных битов контроля по четности, однако скорость передачи данных гораздо выше.

Один канал памяти Rambus может поддерживать до 32 отдельных устройств RDRAM (микросхем RDRAM), которые устанавливаются в модули RIMM (Rambus Inline Memory Modules). Вся работа с памятью организуется между контроллером памяти и отдельным (а не всеми) устройством. Каждые 10 нс (100 МГц) одна микросхема RDRAM может передавать 16 байт. RDRAM работает быстрее SDRAM приблизительно в три раза.

Для повышения производительности было предложено еще одно конструктивное решение: передача управляющей информации отделена от передачи данных по шине. Для этого предусмотрены независимые схемы управления, а на адресной шине выделены две группы контактов: для команд выбора строки и столбца и для передачи информации по шине данных шириной 2 байта. Шина памяти работает на частоте 400 МГц; однако данные передаются по фронтам тактового сигнала, т.е. дважды в тактовом импульсе. Правая граница тактового импульса называется четным циклом, а левая — нечетным. Синхронизация осуществляется с помощью передачи пакетов данных в начале четного цикла. Максимальное время ожидания составляет 2,5 нс.

Не менее важно то, что память RDRAM потребляет мало энергии. Напряжение питания модулей памяти RIMM, как и устройств RDRAM, достигает только 2,5 В. Напряжение низковольтного сигнала изменяется от 1,0 до 1,8 В, т.е. перепад напряжений равен 0,8 В. Кроме того, RDRAM имеет четыре режима пониженного потребления энергии и может автоматически переходить в режим ожидания на завершающей стадии транзакции, что позволяет еще больше экономить потребляемую мощность.

Микросхемы RDRAM устанавливаются в модули RIMM (рис. 2), по размеру и форме подобные DIMM, но не взаимозаменяемые. В настоящее время доступны модули памяти RIMM емкостью 32, 64, 128, 256 Мбайт и более. Контроллер памяти RDRAM с одним каналом Rambus позволяет установить не более трех модулей RIMM. (При плотности упаковки 64 Мбит в кристалле модуль RIMM имеет емкость 256 Мбайт.) Для портативных систем разрабатывается мобильная версия RIMM, называемая SO-RIMM (Small Outline RIMM).

 

Рис. 2. 184-контактный модуль RIMM

 

Модули SIMM и DIMM

 

Изначально оперативная системная память устанавливалась в виде отдельных микросхем, которые благодаря своей конструкции получили название микросхем с двухрядным расположением выводов ( Dual Inline Package — DIP). Системные платы оригинальных систем IBM XT и АТ содержали до 36 разъемов, предназначенных для подключения микросхем памяти. В дальнейшем микросхемы памяти устанавливались на отдельных платах, которые, в свою очередь, подключались в разъемы шины. Я до сих пор помню, сколько времени отнимала эта утомительная и однообразная работа.

Модуль памяти, объединивший в себе все необходимые свойства, получил название SIMM. В современных системах используются модули памяти с однорядным расположением выводов (Single Inline Memory Module — SIMM), с двухрядным расположением выводов (Dual Inline Memory Module — DIMM) или, в качестве альтернативы отдельным микросхем памяти, модули RIMM. Модули памяти представляют собой платы небольшого размера, подключаемые в специальные разъемы системных плат или плат расширения. Микросхемы памяти впаиваются прямо в плату модуля, а потому их удаление или замена невозможны. Поэтому в случае повреждения отдельной микросхемы придется заменить весь модуль памяти.

На сегодняшний день существует два основных типа модулей SIMM, два основных типа модулей DIMM и только один тип модулей RIMM. Все они используются в настольных системах. Типы модулей различаются количеством выводов, шириной строки памяти или типом используемой памяти.

Существует, например, два основных типа модулей SIMM: 30-контактный (8 бит плюс 1 дополнительный бит контроля четности) и 72-контактный (32 бит плюс 4 дополнительных бита контроля четности), обладающие различными свойствами. 30-контактный модуль SIMM имеет меньшие размеры, причем микросхемы памяти могут быть расположены как на одной стороне платы, так и на обеих.

Также есть два типа модулей DIMM. Модули памяти DIMM обычно содержат стандартные микросхемы SDRAM или DDR SDRAM и отличаются друг от друга физическими характеристиками. Стандартный модуль DIMM имеет 168 выводов, по одному радиусному пазу с каждой стороны и два паза в области контакта. Модули DDR DIMM, в свою очередь, имеют 184 вывода, по два паза с каждой стороны и только один паз в области контакта. Ширина тракта данных модулей DIMM может быть равна 64 разрядам (без контроля четности) или 72 разрядам (с контролем четности или поддержкой кода коррекции ошибок ЕСС). На каждой стороне платы DIMM расположены различные выводы сигнала. Именно поэтому они называются модулями памяти с двухрядным расположением выводов. Эти модули примерно на один дюйм (25 мм) длиннее модулей SIMM, но благодаря своим свойствам содержат гораздо больше выводов.

Модуль памяти RIMM также двухсторонний. На сегодняшний день существует только один 184-контактный модуль, имеющий по одному радиусному пазу с каждой стороны и два паза, расположенных в центральной части области контакта.

На рис. 3, 4 и 5 показаны типичные 30- и 72-контактные модули SIMM, а также 168- контактный модуль SDRAM DIMM. Модули памяти весьма компактны, учитывая их емкость. В данный момент существует несколько их разновидностей, которые отличаются разной емкостью и быстродействием.

Микросхемы динамической памяти (DRAM), установленные в модулях разных типов (SIMM, DIMM или RIMM), могут иметь различное быстродействие. Для модулей SIMM эта величина изменяется от 50 до 120 нс. Существуют различные версии модулей DIMM с частотами PC66, PC100 и PC133 (соответственно 66, 100 и 133 МГц). Модули памяти DDR DIMM имеют частоту PC1600 и PC2100 (1600 и 2100 Мбайт/с соответственно).

 

Рис. 3. Обычный 30-контактный (9-разрядный) модуль SIMM

Рис. 4. Обычный 72-контактный (36-разрядный) модуль SIMM

Рис. 5. Обычный 168-контактный (72-разрядный) модуль DIMM

Модули памяти DIMM и RIMM содержат в себе встроенное ПЗУ (ROM), передающее параметры синхронизации и скорости модулей, поэтому рабочая частота контроллера памяти и шины памяти в большинстве систем соответствует наименьшей частоте установленных модулей DIMM/RIMM. Большинство модулей DIMM содержат микросхемы памяти SDRAM, т.е. передача данных происходит в виде высокоскоростных пакетов, использующих синхронизируемый интерфейс. В модулях DDR DIMM также используются микросхемы SDRAM, но передача данных выполняется дважды в течение одного такта, т.е. вдвое быстрее. Микросхемы памяти SDRAM поддерживают частоту шины до 133 МГц, в то время как модули памяти DR DIMM — до 266 МГц.

Существует несколько различных вариантов модулей DIMM, например модули памяти с буфером или без буфера, с напряжением питания 3,3 В или 5 В. Модули DIMM с буфером содержат дополнительные микросхемы буфера, используемые для взаимодействия с системной платой. К сожалению, микросхемы буфера замедляют модули памяти DIMM и поэтому совершенно не эффективны при более высоких скоростях. Исходя из этих соображений, во всех персональных компьютерах используются модули DIMM без буфера. Напряжение питания большинства модулей DIMM, предназначенных для ПК, составляет 3,3 В. Установка 5-вольтного модуля памяти в разъем 3,3 В приведет к его повреждению. Чтобы этого избежать, в разъемах и модулях памяти используются соответствующие ключи.

Буферизированные модули памяти с рабочим напряжением 5 В обычно используются в компьютерах Apple, а также в других системах, не относящихся к семейству x86. Установочные ключевые пазы модулей DIMM различных типов расположены по-разному. Подобная конструкция позволяет избежать установки модуля памяти в разъем другого типа.

 

Быстродействие памяти

Время доступа микросхем памяти колеблется от 10 до 200 нс. (Напомним, что одна наносекунда это время, за которое свет преодолевает расстояние в 30 см.) При замене неисправного модуля или микросхемы памяти новый элемент должен быть такого же типа, а его время доступа должно быть меньше или равно времени доступа заменяемого модуля. Таким образом, заменяющий элемент может иметь и более высокое быстродействие.

Обычно проблемы возникают при использовании микросхем или модулей, не удовлетворяющих определенным (не слишком многочисленным) требованиям, например к длительности циклов регенерации. Вы можете также столкнуться с несоответствием в разводках выводов, емкости, разрядности или конструкции. Время выборки (доступа) всегда может быть меньше, чем это необходимо (т.е. элемент может иметь более высокое быстродействие), при условии, конечно, что все остальные требования соблюдены.

При установке более быстродействующих модулей памяти производительность компьютера, как правило, не повышается, поскольку система обращается к ней с прежней частотой. Если память компьютера работает с предельным быстродействием, замена модулей может повысить его надежность.

Чтобы акцентировать внимание на проблемах синхронизации и надежности, Intel создала стандарт для новых высокоскоростных модулей u1087 памяти, работающих на частоте 100 и 133 МГц. Этот стандарт, называемый PC100 и PC133, поддерживается в новых наборах микросхем системной логики. Он устанавливает пределы синхронизации и время доступа для модулей памяти. Ведь при работе на частоте 100 МГц и выше допустимые отклонения в синхронизации памяти не очень велики.

При неполадках в памяти и ее недостаточном быстродействии возникают одни и те же проблемы (обычно появляются ошибки четности или компьютер перестает работать). Сообщения об ошибках могут возникать и при выполнении процедуры POST.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...