Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Математические модели в процедурах анализа на макроуровне




Исходные уравнения моделей. Исходное математическое описание процессов в объектах на макроуровне представлено системами обыкновенных дифференциальных и алгебраических уравнений. Аналитические решения таких систем при типичных значениях их порядков в практических задачах получить не удается, поэтому в САПР преимущественно используются алгоритмические моде­ли. В этом параграфе изложен обобщенный подход к формированию алгоритмических моделей на макроуровне, справедливый для большинства приложений.

Исходными для формирования математических моделей объектов на макроуровне являются компонентные и топологические уравнения.

Компонентными уравнениями называют уравнения, описывающие свойства элементов (компонентов), другими словами, это уравнения математических моделей элементов (ММЭ).

Топологические уравнения описывают взаимосвязи в составе моделируемой системы.

В совокупности компонентные и топологические уравнения конкретной физической системы представляют собой исходную математическую модель системы (ММС).

Очевидно, что компонентные и топологические уравнения в системах различной физической природы отражают разные физические свойства, но могут иметь одинаковый формальный вид. Одинаковая форма записи математических соотношений позволяет говорить о формальных аналогиях компонентных и топологических уравнений. Такие аналогии существуют для механических поступательных, механических вращательных, электрических, гидравлических (пневматических), тепловых объектов. Наличие аналогий приводит к практически важному выводу: значительная часть алгоритмов формирования и исследования моделей в САПР оказывается инвариантной и может быть применена к анализу проектируемых объектов в разных предметных областях. Единство математического аппарата формирования ММС особенно удобно при анализе систем, состоящих из физически разнородных подсистем.

В перечисленных выше приложениях компонентные уравнения имеют вид:

 

FK(d V/ dt, V, t) = 0 (3.1)

 

и топологические уравнения

 

FT(V) = 0 (3.2)

 

где V = (v 1 v 2,... vn) – вектор фазовых переменных, t – время.

Различают фазовые переменные двух типов, их обобщенные наименования – фазовые переменные типа потенциала (например, электрическое напряжение) и типа потока (например, электрический ток). Каждое компонентное уравнение характеризует связи между разнотипными фазовыми переменными, относящимися к одному компоненту (например, закон Ома описывает связь между напряжением и током в резисторе), а топологическое уравнение – связи между однотипными фазовыми переменными в разных компонентах.

Модели можно представлять в виде систем уравнений или в графической форме, если между этими формами установлено взаимно однозначное соответствие. В качестве графической формы часто используют эквивалентные схемы.

Примеры компонентных и топологических уравнений. Рассмотрим несколько типов систем.

Электрические системы. В электрических системах фазовыми переменными являются электрические напряжения и токи. Компонентами систем могут быть простые двухполюсные элементы и более сложные двух- и многополюсные компоненты. К простым двухполюсникам относятся следующие элементы: сопротивление, емкость и индуктивность, характеризуемые одноименными параметрами R, С, L. В эквивалентных схемах эти элементы обозначают в соответствии с рис. 3.2,а.

Компонентные уравнения простых двухполюсников:

 

для R: u = i R (закон Ома), (3.3)

для C: i = C du/dt, (3.4)

для L: u = L di/dt, (3.5)

 

где и – напряжение (точнее, падение напряжения на двухполюснике), i – ток.

Эти модели лежат в основе моделей других возможных более сложных компонентов. Большая сложность может определяться нелинейностью уравнений (3.3) – (3.5) (т.е. зависимостью R, С, L от фазовых переменных), или учетом зависимостей параметров R, С, L от температуры, или наличием более двух полюсов. Однако многополюсные компоненты могут быть сведены к совокупности взаимосвязанных простых элементов.

Топологические уравнения выражают законы Кирхгофа для напряжений (ЗНК) и токов (ЗТК). Согласно ЗНК, сумма напряжений на компонентах вдоль любого замкнутого контура в эквивалентной схеме равна нулю, а в соответствии с ЗТК сумма токов в любом замкнутом сечении эквивалентной схемы равна нулю:

 

 

где Кр – множество номеров элементов р- гоконтура, J q – множество номеров элементов, входящих в q- есечение.

Примером ММ сложного компонента может служить модель транзистора. На рис. 3.3 представлена эквивалентная схема биполярного транзистора, на которой зависимые от напряжений источники тока i эд = i тэехр(u э/(m φT)) и i кд = i ткехр(u к/(m φT)) отображают статические вольтамперные характеристики p-n переходов, i тэ и i тк – тепловые токи переходов, m φT – температурный потенциал, иэ и ик_ напряжения на эмиттерном и коллекторном переходах, Сэ и Ск – емкости переходов, Rуэ и Rук – сопротивления утечки переходов, R6 и RK – объемные сопротивления тел базы и коллектора, i г = Bi эдB и i кд _источник тока, моделирующий усилительные свойства транзистора, В и В и прямой и инверсный коэффициенты усиления тока базы. Здесь иэ, ик, i эд, i кд, i г– фазовые переменные, а остальные величины – параметры модели транзистора.

 

 

Механические системы. Фазовыми переменными в механических поступательных системах являются силы и скорости. Используют одну из двух возможных электромеханических аналогий. В дальнейшем будем использовать ту из них, в которой скорость относят к фазовым переменным типа потенциала, а силу считают фазовой переменной типа потока. Учитывая формальный характер подобных аналогий, в равной мере можно применять и противоположную терминологию.

Компонентное уравнение, характеризующее инерционные свойства тел, в силу второго закона Ньютона имеет вид

 

F = M du/dt (3.8)

 

где F – сила; M – масса; u – поступательная скорость.

Упругие свойства тел описываются компонентным уравнением, которое можно получить из уравнения закона Гука. В одномерном случае (если рассматриваются продольные деформации упругого стержня)

 

G= Е ε (3.9)

 

где G – механическое напряжение; Е – модуль упругости; ε = Δl/l – относительная деформация; Δl – изменение длины l упругого тела под воздействием G. Учитывая, что G = F/S, где F – сила, S – площадь поперечного сечения тела, и дифференцируя (3.9), имеем

 

dF/dt=(SE ю/ l) d(Δl)/dt

или

dF/dt=g u (3.10)

 

где g =(SE/l)- жесткость (величину, обратную жесткости, называют гибкостью L M); и = d(Δl)/dt – скорость.

Диссипативные свойства в механических системах твердых тел выражаются соотношениями, характеризующими связь между силой трения и скоростью взаимного перемещения трущихся тел, причем в этих соотношениях производные сил или скоростей не фигурируют, как и в случае описания с помощью закона Ома диссипативных свойств в электрических системах.

Топологические уравнения характеризуют, во-первых, закон равновесия сил: сумма сил, приложенных к телу, включая силу инерции, равна нулю (принцип Даламбера), во-вторых, закон скоростей, согласно которому сумма относительной, переносной и абсолютной скоростей равна нулю.

В механических вращательных системах справедливы компонентные и топологические уравнения поступательных систем с заменой поступательных скоростей на угловые, сил – на вращательные моменты, масс – на моменты инерции, жесткостей – на вращательные жесткости.

Условные обозначения простых элементов механической системы показаны на рис. 3.2,б.

Нетрудно заметить наличие аналогий между электрической и механической системами. Так, токам и напряжениям в первой из них соответствуют силы (либо моменты) и скорости механической системы, компонентным уравнениям (3.4) и (3.5) и фигурирующим в них параметрам С и L, – уравнения (3.8) и (3.10) и параметры М и LM, очевидна аналогия и между топологическими уравнениями. Далее параметры С и М будем называть емкостными (емкостного типа), параметры L и LM индуктивными (индуктивного типа), а параметры R и R тр = – резистивными (резистивного типа).

Имеется и существенное отличие в моделировании электрических и механических систем: первые из них одномерны, а процессы во вторых часто приходится рассматривать в двух- (2 D) или трехмерном (3 D) пространстве. Следовательно, при моделировании механических систем в общем случае в пространстве 3 D нужно использовать векторное представление фазовых переменных, каждая из которых имеет шесть составляющих, соответствующих шести степеням свободы.

Однако отмеченные выше аналогии остаются справедливыми, если их относить к проекциям сил и скоростей на каждую пространственную ось, а при графическом представлении моделей использовать шесть эквивалентных схем – три для поступательных составляющих и три для вращательных.

Гидравлические системы. Фазовыми переменными в гидравлических системах являются расходы и давления. Как и в предыдущем случае, компонентные уравнения описывают свойства жидкости рассеивать или накапливать энергию.

Рассмотрим компонентные уравнения для жидкости на линейном участке трубопровода длиной Δ l и воспользуемся уравнением Навье-Стокса в следующей его форме (для ламинарного течения жидкости)

 

 

где р – плотность жидкости; U– скорость; Р – давление; а – коэффициент линеаризованного вязкого трения. Так как U = Q/S, где Q – объемный расход; S – площадь поперечного сечения трубопровода, то, заменяя пространственную производную отношением конечных разностей, имеем

 

,

или

 

где ΔР – падение давления на рассматриваемом участке трубопровода. L г= Δlρ/S – гидравлическая индуктивность, отражающая инерционные свойства жидкости, R г = 2 a/ρ – гидравлическое сопротивление, отражающее вязкое трение.

Примечание. В трубопроводе круглого сечения радиусом r удобно использовать выражение для гидравлического сопротивления при ламинарном течении: R г = δυΔl/πr4), где υ – кинематическая вязкость; в случае турбулентного характера течения жидкости компонентное уравнение для вязкого трения имеет вид при .

Интерпретация уравнения (3.11) приводит к эквивалентной схеме рис. 3.4.

Явление сжимаемости жидкости описывается компонентным уравнением, вытекающим из закона Гука

 

Δ P=E Δ l/l

 

Дифференцируя (3.12) и учитывая, что объемный расход Q связан со скоростью U= d( Δ l)/dt соотношением Q = U S, получаем

 

d Δ P dt =C г Q

 

где С г = E/(S Δ l) – гидравлическая емкость.

Связь подсистем различной физической природы. Используют следующие способы моделирования взаимосвязей подсистем: с помощью трансформаторной, гираторной связей и с помощью зависимости параметров компонентов одной подсистемы от фазовых переменных другой. В эквивалентных схемах трансформаторные и гираторные связи представлены зависимыми источниками фазовых переменных, показанными на рис. 3.5. На этом рисунке k и п – коэффициенты трансформации; g – передаточная проводимость; Uj и Ij,- фазовые переменные в j -й цепи; j =1 соответствует первичной, а j =2 – вторичной цепи.

 

Представление топологических уравнений. Известен ряд методов формирования ММС на макроуровне. Получаемые с их помощью модели различаются ориентацией на те или иные численные методы решения и набором базисных, переменных, т.е. фазовых переменных, остающихся в уравнениях итоговой ММС. Общим для всех методов является исходная совокупность топологических и компонентных уравнений (3.1)-(3.2).

При записи топологических уравнений удобно использовать промежуточную графическую форму – представление модели в виде эквивалентной схемы, состоящей из двухполюсных элементов. Общность подхода при этом сохраняется, так как любой многополюсный компонент можно заменить подсхемой из двухполюсников. В свою очередь эквивалентную схему можно рассматривать как направленный граф, дуги которого соответствуют ветвям схемы. Направления потоков в ветвях выбираются произвольно (если реальное направление при моделировании окажется противоположным, то это приведет лишь к отрицательным численным значениям потока).

Пример некоторой простой эквивалентной схемы и соответствующего ей графа приведен на рис. 3.6. Для конкретности и простоты изложения на рис. 3.6 использованы условные обозначения, характерные для электрических эквивалентных схем, по той же причине далее в этом параграфе часто применяется электрическая терминология. Очевидно, что поясненные выше аналогии позволяют при необходимости легко перейти к обозначениям и терминам, привычным для механиков.

 

Для получения топологических уравнений все ветви эквивалентной схемы разделяют на подмножества хорд и ветвей дерева. Имеется в виду покрывающее (фундаментальное) дерево, т.е. подмножество из (β-1 дуг, не образующее ни одного замкнутого контура, где β – число вершин графа (узлов эквивалентной схемы). На рис. 3.6,б показан граф эквивалентной схемы рис. 3.6,а, толстыми линиями выделено одно из возможных покрывающих деревьев.

Выбор дерева однозначно определяет вектора напряжений Ux и токов Ix хорд, напряжений Uвд и токов Iвд ветвей дерева и приводит к записи топологических уравнений в виде

 

Ux + МUвд = 0

Iвд - МТIx = 0

 

где М – матрица контуров и сечений, МТ – транспонированная М -матрица.

В М -матрице число строк соответствует числу хорд, число столбцов равно числу ветвей дерева. М -матрица формируется следующим образом. Поочередно к дереву подключаются хорды. Если при подключении к дереву р-й хорды q-я ветвь входит в образовавшийся контур, то элемент Mpq матрицы равен +1 при совпадении направлений ветви и подключенной хорды, Mpq= -1 при несовпадении направлений. В противном случае Mpq = 0.

Для схемы на рис. 3.6 М -матрица представлена в виде табл. 3.1

 

 

Особенности эквивалентных схем механических объектов. Для каждой степени свободы строят свою эквивалентную схему. Каждому телу с учитываемой массой соответствует узел схемы (вершина графа). Один узел, называемый базовым, отводится телу, отождествляемому с инерциальной системой отсчета.

Каждый элемент массы изображают ветвью, соединяющей узел соответствующего массе тела с базовым узлом; каждый элемент упругости – ветвью, соединяющей узлы тел, связанных упругой связью; каждый элемент трения – ветвью, соединяющей узлы трущихся тел. Внешние воздействия моделируются источниками сил i

В качестве примера на рис. 3.7,а изображена некоторая механическая система – тележка, движущаяся по дороге и состоящая из платформы А, колес В1, В2 и рессор С1, C2. На рис. 3.7,б приведена эквивалентная схема для вертикальных составляющих сил и скоростей, на которой телам системы соответствуют одноименные узлы, учитываются массы платформы и колес, упругость рессор, трение между колесами и дорогой; неровности дороги вызывают воздействие на систему, изображенное на рис. 3.7,б источниками силы.

Характеристика методов формирования ММС. Исходную систему компонентных и топологических уравнений (3.1) и (3.2) можно рассматривать как окончательную ММС, которая и подлежит численному решению. Численное решение этой системы уравнений предполагает алгебраизацию дифференциальных уравнений, например, с помощью преобразования Лапласа или формул численного интегрирования. В программах анализа нелинейных объектов на макроуровне, как правило, применяются формулы численного интегрирования, примером которых может служить неявная формула Эйлера

 

 

где V i - – значение переменной V на i -м шаге интегрирования; h n = t nt n-1 – шаг интегрирования. Алгебраизация подразумевает предварительную дискретизацию независимой переменной t (вместо непрерывной переменной t получаем конечное множество значений tn), она заключается в представлении ММС в виде системы уравнений

 

FK(Zn, Vn, t n) = 0

FT(Vn) = 0 (3.15)

Zn = (Vn - Vn-1) / h n

 

с неизвестными Vn и Zn, где использовано обозначение Z = dV/dt. Эту систему алгебраических уравнений, в общем случае нелинейных, необходимо решать на каждом шаге численного интегрирования исходных дифференциальных уравнений.

Однако порядок этой системы довольно высок и примерно равен 2α+γ, где α – число ветвей эквивалентной схемы (каждая ветвь дает две неизвестные величины – фазовые переменные типа потока и типа потенциала, за исключением ветвей внешних источников, у каждой из которых неизвестна лишь одна фазовая переменная), γ – число элементов в векторе производных. Чтобы снизить порядок системы уравнений и тем самым повысить вычислительную эффективность ММС, желательно выполнить предварительное преобразование модели (в символическом виде) перед ее многошаговым численным решением. Предварительное преобразование сводится к исключению из системы части неизвестных и соответствующего числа уравнений. Оставшиеся неизвестные называют базисными. В зависимости от набора базисных неизвестных различают несколько методов формирования ММС.

Согласно методу переменных состояния (более полное название метода – метод переменных, характеризующих состояние), вектор базисных переменных W состоит из переменных состояния. Этот вектор включает неизбыточное множество переменных, характеризующих накопленную в системе энергию. Например, такими переменными могут быть скорости тел (кинетическая энергия определяется скоростью, так как равна Ми2/2), емкостные напряжения, индуктивные токи и т.п. Очевидно, что число уравнений не превышает γ. Кроме того, итоговая форма ММС оказывается приближенной к явной форме представления системы дифференциальных уравнений, т.е. к форме, в которой вектор d W /dt явно выражен через вектор W, что упрощает дальнейшее применение явных методов численного интегрирования. Метод реализуется путем особого выбора системы хорд и ветвей дерева при формировании топологических уравнений. Поскольку явные методы численного интегрирования дифференциальных уравнений не нашли широкого применения в программах анализа, то метод переменных состояния также теряет актуальность и его применение оказывается довольно редким.

В классическом варианте узлового метода в качестве базисных переменных используются узловые потенциалы (т.е. скорости тел относительно инерциальной системы отсчета, абсолютные температуры, перепады давления между моделируемой и внешней средой, электрические потенциалы относительно базового узла). Число узловых потенциалов и соответственно уравнений в ММС оказывается равным β-1, где β – число узлов в эквивалентной схеме. Обычно β заметно меньше α и, следовательно, порядок системы уравнений в ММС снижен более чем в два раза по сравнению с поряд­ком исходной системы.

Однако классический вариант узлового метода имеет ограничения на применение и потому в современных программах анализа наибольшее распространение получил модифицированный узловой метод.

Узловой метод. Матрицу контуров и сечений М в узловом методе формируют следующим образом. Выбирают базовый узел эквивалентной схемы и каждый из остальных узлов соединяют с базовым фиктивной ветвью. Именно фиктивные ветви принимают в качестве ветвей дерева, а все реальные ветви оказываются в числе хорд. Поскольку токи фиктивных ветвей равны нулю, а вектор напряжений фиктивных ветвей есть вектор узловых потенциалов φ, то уравнения (3.13) и (3.14) принимают вид

 

U + Mφ = 0 (3.16)

MT I = 0 (3.17)

 

где U и I- векторы напряжений и токов реальных ветвей.

Компонентные уравнения алгебраизуются с помощью одной из формул численного интегрирования, линеаризуются с помощью разложения в ряд Тейлора с сохранением только линейных членов, и их представляют в виде

 

In = GnUn + An (3.18)

 

где Gn – диагональная матрица проводимостей, рассчитанная в точке tn; An – вектор, зависящий от значений фазовых переменных на предшествующих шагах интегрирования и потому уже известный к моменту времени tn. Каждая ветвь (за исключением идеальных источников напряжения) имеет проводимость, которая занимает одну из диагональных клеток матрицы проводимостей. Окончательно ММС получаем, подставляя (3.18) и затем (3.16) в (3.17):

 

MT In = MT (GnUn + An) =- MTGnn +MTAn = 0

или

Яnφnn (3.19)

 

где ЯnТ GnM – матрица Якоби, Вn = МТАn – вектор правых частей. Отметим, что матрица М имеет размер равен α×(β-1), матрица Gn –α×α, а матрица Якоби имеет размер – (β-1)×(β-1).

Система (3.19) является системой линейных алгебраических уравнений, полученной в результате дискретизации независимой переменной, алгебраизации дифференциальных уравнений и линеаризации алгебраических уравнений. Алгебраизация приводит к необходимости пошагового вычислительного процесса интегрирования, линеаризация – к выполнению итерационного вычислительного процесса на каждом шаге интегрирования.

Рассмотрим, каким образом определяются проводимости ветвей.

Для резистивных ветвей проводимость – величина, обратная сопротивлению R.

При использовании неявного метода Эйлера проводимость емкостной ветви получается из ее компонентного уравнения следующим образом.

На п- мшаге интегрирования

 

 

проводимость и при С = const получаем

 

g = C / hn

 

при этом в вектор правых частей входит элемент

Проводимость индуктивной ветви можно найти аналогично:

 

un = L (in-in -1) /hn

 

и при L = const

 

g= hn / L, an= in -1

 

Аналогично определяют проводимости и при использовании других разностных формул численного интегрирования, общий вид которых

 

 

где μn зависит от шага интегрирования, ηn от значений вектора U на предыдущих шагах.

Классический вариант узлового метода имеет ограничения на применение. Так, недопустимы идеальные (с бесконечной проводимостью) источники напряжения, зависимые источники, аргументами которых являются токи, а также индуктивности, поскольку в классическом варианте токи не входят в число базисных переменных. Устранить эти ограничения довольно просто – нужно расширить совокупность базисных координат, включив в нее токи-аргументы зависимых источников, а также токи ветвей индуктивных и источников напряжения. Полученный вариант метода называют модифицированным узловым методом.

Согласно модифицированному узловому методу, в дерево при построении матрицы М включают ветви источников напряжения и затем фиктивные ветви. В результате матрица М принимает вид (табл. 3.2), где введены обозначения: U ИCT(I) – источники напряжения, зависящие от тока; Е (t) – независимые источники напряжения; I ИСТ(I) – источники тока, зависящие от тока; L – индуктивные ветви; M ij- – подматрица контуров хорд группы i и сечений фиктивных ветвей группы j.

 

 

Те же обозначения U ИCT, I, E, I ИСТ будем использовать и для соответствующих векторов напряжений и токов. Назовем ветви, токи которых являются аргументами в выражениях для зависимых источников, т.е. входят в вектор I, особыми ветвями. Остальные ветви (за исключением индуктивных) – неособые. Введем также обозначения: I L – вектор индуктивных токов; I x и U x. – векторы токов и напряжений неособых ветвей; G x, G L, G I– диагональные матрицы проводимостей ветвей неособых, индуктивных, особых.

 

Уравнение закона токов Кирхгофа (3.17) для фиктивных ветвей имеет вид

 

 

Исключим вектор I Х с помощью компонентного уравнения (3.18), а вектор IИСТ с помощью очевидного уравнения

 

I ИСТ =KI

 

где – матрица передаточных коэффициентов источников тока. Используем также выражение (3.16), принимающее вид

 

 

Получаем систему из трёх матричных уравнений с неизвестными векторами φ, I, I L:

 

; (3.20)

; (3.21)

, (3.22)

 

где обозначено . Эта система и является итоговой ММ в узловом модифицированном методе.

Замечания:

1. Вектор индуктивных токов нельзя исключить из итоговой системы уравнений, так как его значения входят в вектор AL на последующих шагах численного интегрирования.

2. Источники тока, зависящие от напряжений, относятся к неособым ветвям, их проводимости входят в матрицу Gx, которая при этом может иметь недиагональный вид.

3. Источники напряжения, зависящие от напряжений, в приведенных выше выражениях не учитываются, при их наличии нужно в матрице М выделить столбец для этих ветвей, что приводит к появлению дополнительных слагаемых в правых частях уравнений (3.19) – (3.21).

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...