Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Автоматические средства измерения содержания в нефти воды, солей, плотности




Измерение содержания воды. В связи с внедрени­ем автоматизированных блочных замерных установок и безрезервуарной сдачи нефти разработаны методы и созданы при­боры для автоматического определения содержания воды в продукции скважин в процессе измерения дебита или в товар­ной нефти в процессе ее перекачки в магистральный нефтепро­вод.

Содержание воды в потоке нефти определяется, различными косвенными методами. Среди них наибольшее распространение получил так называемый диэлектрометрический метод, основанный на зависимости диэлектрической проницаемости водонефтяной смеси от диэлектрических свойств компонентов этой i меси. Безводная нефть является типичным неполярным диэлектриком.

Приборы, предназначенные для непрерывного контроля за удержанием воды в потоке сырой или товарной нефти, называются влагомерами.

При управлении обезвоживающими установками необходимо
контролировать содержание воды как в исходной, так и в обезвоженной нефти.

Для непрерывного измерения содержания воды в нефти разработаны приборы типа УВН.

Между обкладками конденсатора протекает контролиру­емая, а конденсатора - обезвоженная нефть, полученная отгонкой из нее воды. Обезвоживание нефти осуществляется в блоке подготовки. Емкости конденсаторов сравниваются в блоке, на выходе которого формируется сигнал в виде час­тоты переменного тока, пропорциональной разности емкостей конденсаторов.

В блоке имеются два генератора Г1 и Г2, усилитель У, кон­денсаторы Си и С и фильтр Ф. Далее частота в преобразователе преобразуется в пропорциональный сигнал постоянного тока. Преобразователь соединен с блоком линией связи. Вы­ходной сигнал преобразователя подается на вторичный прибор потенциометра, шкала которого градуирована в единицах со­держания воды в нефти.

Сопротивления служат соответственно для настройки чувствительности и нуля (нижнего предела шкалы прибора).

Для периодической проверки работы прибора (при уста­новке нуля) при помощи вентиля через конденсатор пропус­кают анализируемую нефть.

При измерении содержания воды в товарной нефти шкала электронного измерительного блока градуируется в пределах, 0—3%, в сырой нефти — соответственно 0—1, 0—15, 0—60%. Разработаны также влагомеры типа «Фотон-П». Однако у диэлектрометрического метода измерения влагосодержания имеется существенный недостаток — прибор оказы­вается неработоспособным при смене сорта нефти и требует специальной перестройки.

Влияние сортности нефти на эти влагомеры можно значи­тельно уменьшить, включив в схему измерения два влагомера по дифференциальной схеме, которые используются для изме­рения осушенной и сырой нефти, аналоговый сумматор, устрой­ство для осушки нефти на потоке, устройство для отделения пу­зырьков пара и газа от анализируемой нефти и теплообменник для выравнивания температуры нефти.

Перспективный путь решения этой проблемы создание приборов спектрального анализа и разработка метода спектро­скопии рассеивающих сред.

При падении пучка излучения на водонефтяную эмульсию обычная картина поглощения искажается рассеиванием на опти­ческих неоднородностях среды. Часть пучка отражается, часть выходит из эмульсии, рассеиваясь в разных направлениях. Ин­тенсивность излучения в каждой точке рассеянного пучка зави­сит от концентрации воды, распределения капель воды по раз­меру, длины волны падающего луча и оптических свойств сре­ды. Любой из перечисленных эффектов можно использовать для определения влажности, однако большие возможности откры­вает измерение собственного поглощения излучения водой. На этом принципе разработано несколько влагомеров. Принцип дей­ствия анализаторов основан на измерении поглощения эмуль­сионной водой инфракрасного излучения.

Для определения содержания солей в товарной нефти разработан автоматический анализатор И0Н-П2, представляющий собой автоматический прибор, осуществляющий отбор проб по заданной программе, разбавление отобранной пробы раство­рителем, измерение и регистрацию. Принцип действия анали­затора основан на измерении электропроводности пробы нефти, разбавленной смесью, состоящей из изобутилового и этилового спиртов и бензола. Диапазон измерений И0Н-П2 находится в пределах от 0 до 50 и от 0 до 500 иг/л.

В СССР применяются также импортные солемеры типа РСД, ССА (США), Солинол (ВНР).

Измерение плотности. Для измерения плотности нефти на потоке в настоящее время наибольшее распростране­ние получили приборы, принцип действия которых основан кг измерении частоты колеблющейся системы трубок, внутри ко­торых протекает жидкость. Плотномер выдает модулированный по частоте выходной сигнал и обеспечивает его передачу и циф­ровое преобразование. Принцип действия прибора можно срав­нить с камертоном. Две параллельные трубки, заполненные испытываемой жидкостью, приводятся в механическое колеба­ние посредством электромагнитной катушки, расположенной между ними. Трубки вибрируют с собственной частотой, являю­щейся функцией плотности жидкости, которую они содержат.

Наряду с вибрационными плотномерами в последнее время начали выпускать радиоизотопные плотномеры, предназначен­ные для бесконтактного непрерывного измерения в стацио­нарных условиях и дистанционной записи плотности различных жидкостей, транспортируемых по трубопроводам.

Для коммерческих операций при сдаче-приеме нефти наи­большее применение, получили импортные плотномеры типа «Солтартон» (Великобритания) и «Денситон» (ВНР).

Диапазон измерения плотности этих приборов от 300 дс 1600 кг/м3, рабочее давление до 15 МПа. Погрешность измере­ния составляет от ±0,1 до ±0,9 кг/м3. Принцип действия ука­занных приборов — вибрационный.

Учет нефти

Учет нефти осуществляется на всем пути ее движения, начи­ная с замера дебита отдельных скважин и кончая учетом нефти, сдаваемой нефтеперерабатывающим заводам. Нефть в сыром (обводненном) виде замеряется на бригадных и промысловых узлах учета нефти. После обезвоживания и обессоливания нефть уже в так называемом товарном виде учитывается при осущест­влении приемо-сдаточных операций между нефтедобывающими предприятиями и управлениями трубопроводного транспорта нефти, а также между управлениями трубопроводного транспор­та при перекачке нефти по магистральным нефтепроводам.

До недавнего времени основным средством учета нефти яв­лялся резервуар. Приемо-сдаточные пункты учета нефти разме­щались в основном на нефтепромыслах, где нефть передавалась транспортирующим организациям, и на нефтеперерабатываю­щих заводах, где нефть принималась от транспортирующих ор­ганизаций для переработки. На приемо-сдаточных пунктах осу­ществлялись прием и сдача нефти по количеству и качеству. Нефть предъявляли к приему в калиброванных резервуарах, а качество сдаваемой нефти определялось по отобранным про­бам в химических лабораториях. Данный метод учета нефти мог использоваться в отрасли, пока добыча нефти была ограничен­ной. Впоследствии данный метод учета стал неприемлемым.

Для организации учета нефти с использованием резервуаров и химических лабораторий потребовались бы огромные капи­тальные вложения в их сооружение, кроме того, построить но­вые резервуары и химические лаборатории за короткий проме­жуток времени практически невозможно.

Необходимо было также повысить достоверность учета нефти.

C использованием резервуарного метода очень сложно автоматизировать процесс коммерческого учета нефти. Все отмеченные факторы повлияли на пересмотр систем товарно-учетных операций и перевод их на поточные методы. Бы­ли разработаны и серийно освоены производством счетчики-рас­ходомеры нефти на потоке различных конструкций. В нефтяной промышленности наибольшее применение получили тахометрические вихревые и ультразвуковые приборы. Тахометрические приборы, в свою очередь, подразделяются на обычные и тур­бинные.

При объемном методе измерения поток нефти или нефтепро­дуктов делится механическим способом на отдельные порции, которые подсчитываются. В зависимости от средств разделения потока счетчики подразделяются на несколько типов. Наиболее распространены шестеренчатые и лопастные.

В настоящее время счетчики жидкости с овальными шестер­нями являются основными приборами камерного типа для изме­рения количества жидкостей, с вязкостью от 0,55-10~6 до 3-10 4 м2/с, температурой от —40 до 120°С и давлением до 6,4 МПа, в трубах диаметром до 100 мм. При указанных усло­виях погрешность счетчиков составляет ±0,5 %.

Лопастные счетчики жидкости используются у нас в стране в основном для трубопроводов диаметром от 100 до 200 мм. Их подвижная система состоит из цилиндра, вращающегося вокруг своей центральной оси, и четырех лопастей, перемещающихся в радиальных прорезях цилиндра. В любом положении одна или две лопасти выдвинуты из цилиндра практически до упора во внутреннюю цилиндрическую поверхность корпуса счетчика. При этом они перекрывают кольцевой проход и, находясь под раз­ностью давлений жидкости, поступающей и уходящей из счет­чика, перемещаются вместе с последней, вызывая при этом вра­щение всей подвижной системы. Лопасти совершают сложное вращательно-поступательное движение, так как при вращении вместе со своим цилиндром они одновременно перемещаются внутри его прорезей. Цилиндр вращающейся системы может быть расположен как концентрично, так и эксцентрично по от­ношению к внутренней цилиндрической поверхности корпуса счетчика. В первом случае небольшая часть кольцевого про­странства между двумя цилиндрическими поверхностями закры­вается неподвижной вставкой, препятствующей непосредственно­му перетеканию жидкости из подводящей трубы в отводящую.

При измерении малых расходов объемные счетчики обеспе­чивают высокую точность и хорошую повторяемость в большом диапазоне измерения расходов.

При увеличении вязкости попытается точность объемных счетчиков, так как с увеличением гидравлического сопротивле­ния уменьшаются утечки из камеры.

К недостаткам объемных счетчиков можно отнести большие габариты, необходимость тонкой очистки, увеличение погрешно­сти из-за увеличения утечек в результате истирания роторов и корпуса, поэтому на обслуживание измерительных установок требуются большие эксплуатационные затраты.

В последние годы значительный прогресс достигнут в обла­сти изготовления ультразвуковых расходомеров, действие кото­рых основано на законах распространения звука в жидкости. Ультразвуковые сигналы обычно формируются пьезоэлектриче­ским генератором, который преобразует входной электрический сигнал в последовательность звуковых импульсов.

Основными преимуществами ультразвуковых расходомеров
по сравнению с устройствами для измерения расхода других являются: достаточно высокая точность измерения (погрешность до ±0,5.% от диапазона измерения), сравнимая с точностью тур­бинных расходомеров; высокая надежность в связи с отсутствием движущихся час­тей, соприкасающихся с контролируемой средой; отложение за­грязнений контролируемой среды на поверхностях датчика не приводит к резкому ухудшению его точности.

Наибольшее применение в нефтяной промышленности нашли
счетчики-расходомеры турбинного типа. Принцип работы этих счетчиков-тахометрический, в основе которого измерение ско­рости потока путем измерения скорости вращения тела (ротора), находящегося в потоке.

В турбинных счетчиках основным элементом служит вра­щающаяся в подшипниках турбинка. В идеальных условиях ско­рость вращения турбинки пропорциональна скорости потока и число оборотов соответствует определенному количеству про­пущенного продукта. В реальных условиях, вследствие неравно­мерности потока, дисбаланса ротора и сжимаемости среды, дей­ствительное число оборотов будет отличаться от расчетного, что определяет возникновение погрешности, особенно при малых расходах.

Турбинные счетчики имеют ряд преимуществ по сравнению с объемными. Они не требуют тонкой фильтрации, долговечнее и удобнее в эксплуатации, выдерживают более высокое давле­ние, монтаж их на трубопроводе несложен из-за небольших га­баритов и массы.

Основные недостатки турбинных счетчиков связаны с нали­чием движущихся частей, приводящих к истиранию подшипни­ков и увеличению погрешности, а также большого перепада дав­ления на счетчике из-за находящегося в потоке ротора, создаю­щего сопротивления потоку. При этом возникают потери напо­ра, которые с учетом фильтрации достигают 0,1 МПа. Несмотря на указанные недостатки, турбинные счетчики выпускаются оте­чественной промышленностью и многими зарубежными фирма­ми и в настоящее время являются основным средством учета жидкости на потоке.

В нефтяной промышленности широко используются счетчики «Норд»,-выпускаемые заводами Миннефтепрома, «Турбоквант», выпускаемые в ВНР, и некоторые другие.

Учет количества добытой, а также товарной нефти ведут в массовых единицах (тоннах) в строгом соответствии с едины­ми правилами учета. Они сводятся в основном к:

1) измерению объема нефти;

2) измерению ее средней температуры;

3) определению средней плотности нефти и приведению ее к20°С;

4) определению содержания воды, солей и механических при­месей.

После получения этих данных объем нефти умножают на ее среднюю плотность и получают массу брутто нефти. Из дан­ной массы брутто вычитают массу воды, солей и механических примесей и получают массу нетто.

При учете количества нефти в резервуарах объем ее опре­деляют непосредственным замером при помощи замерных лент или уровнемеров. Среднюю температуру нефти получают заме­ром температуры нескольких проб нефти, плотность — ареомет­ром (нефтеденсиметром). Содержание воды, солей и механиче­ских примесей определяется лабораторным анализом средней

пробы нефти.

При сдаче нефти с использованием расходомеров (безрезервуарная сдача) объем нефти определяют по показаниям расхо­домера, температуру, плотность, содержание воды, солей — со­ответственно термометром, плотномером, солемером и влагоме­ром, устанавливаемыми на потоке. В случае их отсутствия эти показатели определяются в результате лабораторного анализа средней пробы нефти, отбираемой пробоотборником на потоке.

Учет нефти в резервуарах

Количество нефти в резервуарах определяют по объему, за­нимаемому, ею в резервуаре. Для быстрого и точного определе­ния объема нефти в зависимости от ее уровня (высоты взлива) пользуются заранее составленными калибровочными (замерны­ми) таблицами на резервуар каждого типа. Резервуары калиб­руют различными методами: при помощи мерных сосудов, нали­вом и сливом заранее отмеренных объемов воды (для малых резервуаров); при помощи объемных счетчиков, замеряющих ко­личество налитой воды при одновременном измерении высоты уровня в калибруемом резервуаре, и замером геометрических размеров резервуара.

Метод выбирают с учетом объема резервуаров и необходи­мой точности. На практике наиболее доступен метод обмера ре­зервуаров стальной рулеткой длиной 20 м. Вертикальные ци­линдрические резервуары калибруют измерением высоты и внут­реннего диаметра каждого пояса; при этом высоту и толщину листов поясов измеряют, как правило, в трех точках по окруж­ности резервуара, принимая в расчетах средние арифметические их значения. Обмерять рекомендуется при наполнении резервуа­ра жидкостью на 60—80%, поскольку на точность калибровоч­ных таблиц влияет гидростатическое давление.

В калибровочные таблицы вводят поправки на неровности днища, на оборудование, расположенное внутри резервуара. Калибровочная таблица является документом, на основании ко­торого учитывается нефть.

При определении количества нефти, находящейся в резер­вуаре, вначале, зная уровень нефти в резервуаре, по калибро­вочным таблицам находят ее объем.

После этого, взяв из резервуара при помощи пробоотборни­ка пробу нефти, определяют в лаборатории ее плотность. Умно­жая объем нефти на плотность, получают массу нефти.

Плотность нефти в резервуаре не является постоянной для всей массы, поэтому приходится определять среднюю плотность всего объема нефти, чтобы найти массу последней.

В верхних слоях резервуара температура нефти, как прави­ло, выше, чем в нижних. Содержание воды в нефти возрастает сверху вниз, а следовательно, и плотность также будет изме­няться согласно этой закономерности. Для точного определения средней плотности нефти необходимо правильно отбирать сред­нюю пробу, точно и своевременно измерять температуру и плот­ность этой пробы.

Уровни нефти и подтоварной воды в резервуарах большой вместимости определяются мерной лентой с миллиметровыми делениями и лотом. Лоты служат для натягивания мерных лент и для определения слоя подтоварной воды посредством прикреп­ляемой к ним водочувствительной ленты.

Измерение уровня рулеткой-с лотом осуществляется следую­щим образом: измеряют базовую сторону (высотный трафарет резервуара) как расстояние по вертикали между днищем или базовым сто­ликом резервуара в точке касания лота рулетки и риской план­ки замерного люка. Полученный результат сравнивают с извест­ной (паспортной) величиной базовой высоты: они не должны отличаться более чем на допустимое отклонение рулетки (1±4 мм), в случае расхождения необходимо выявить причину и устранить; медленно опускают ленту рулетки с лотом до касания лотом днища или базового столика, не допуская отклонения лота от вертикали, не задевая за внутреннее оборудование и сохраняя спокойное состояние поверхности нефти; поднимают ленту рулетки строго вверх, без смещения в сторону, чтобы избежать искажения липни смачивания на ленте рулетки; отсчет на ленте рулетки производят с точностью до 1 мм немедленно, т. е. после появления смоченной части ленты рулетки над замерным люком.

Уровень в каждом резервуаре изме­ряют не менее двух раз. При получении расхождений в отсчетах более 10 мм из­мерения повторяют и из трех наиболее близких отсчетов берут среднее.

Для контроля за наличием подтовар­ной воды измеряют ее уровень в резер­вуарах и других емкостях при помощи водочувствительной ленты или пробоотборника. Затем по градуировочной характеристике резервуаров находят объ­ем подтоварной воды. Для определения объема нефти нужно из объема, отвечающего общему уровню, вычесть объем подтоварной продукции.

При приемо-сдаточных операциях наиболее распространен следующий порядок учета нефти: измерение температуры про­бы сразу же после ее извлечения из резервуара; определение средней плотности нефти и приведение ее к 20°С; определение массового содержания воды (в %) в отобранной средней пробе аппаратом Дина — Старка.

После этих измерений объем обводненной нефти умножают на ее среднюю плотность и получают массу брутто. Из данной массы вычитают массу воды, полученную умножением общей массы «влажной» нефти на массовый процент обводненной неф­ти, и получают массу нетто, т. е. массу чистой нефти, выражен­ную в тоннах.

 

Учет нефти по счетчикам

Основным элементом узла учета нефти является турбинный расходомер. Конструктивно турбинный расходомер состоит из корпуса, внутри которого размещается турбинка, насаженная на ось. Турбинка вместе с осью вращаются на подшипниках. Применяются подшипники качения или сколь­жения. Расходомеры, выполненные на подшипниках качения, предназначены для измерения потоков нефти с вязкостью до 0,3-10-4 м2/с, на подшипниках скольжения— до 3-10-4 м2

Для повышения надежности и точности работы расходомера в его конструкции предусмотрены обтекатель 5 и направляющие аппараты 7. Снаружи корпуса турбины укреплена фланцевая втулка 6 с резьбовым гнездом для установки магнитоиндукционного датчика, представляющего собой катушку индуктивности с сердечником из магнитного материала.

Принцип работы турбинного расходомера основан на пре­образовании линейной скорости движения потока жидкости в пропорциональную ей угловую скорость вращения крыльчат­ки турбинки. При вращении турбинки расходомера лопасти ее, изготовленные из магнитного материала, наводят импульсы электродвижущей силы в магнитоиндукционном датчике, про­порциональные по частоте скорости потока жидкости. После­дующим усилением и преобразованием электрических импуль­сов в электронном блоке вызывается срабатывание шестираз­рядного электромеханического счетчика, вынесенного на лице­вую панель электронного блока.

Несмотря на относительно высокую точность замера расхода турбинными расходомерами, особенно при нагрузках, прибли­жающихся к максимальным, они требуют проверки, так как со временем отклонения в их показаниях могут значительно воз­растать (в связи с износом лопаток, подшипников и т. д.).

Для проверки турбинных расходомеров непосредственно на месте создана поверочная трубо-поршневая установка (ТПУ). Работа ее основана на сравнении расходов, полученных расхо­домером на узле учета и ТПУ, при прохождении через них оди­наковых количеств жидкости в определенный интервал времени.

Конструктивно ТПУ состоит из трубо-поршневого устройства и электронного блока. Трубо-поршневое устрой­ство состоит из калиброванного участка трубы, тройника, расширителя, крана-манипулятора, двух детекторов, шарового разделителя, термометров и образцового манометра.

Калиброванный участок трубы установки ограничивается двумя детекторами, которые фиксируют прохождение шаро­вым разделителем этого участка трубы. Для уменьшения изно­са шарового разделителя внутренняя поверхность калиброван­ного участка трубы покрывается эпоксидной смолой. Наружная часть трубо-поршневого устройства теплоизолирована.

Принцип работы поверочной ТПУ заключается в следующем. Перед началом поверки для стабилизации температуры и дав­ления налаживают циркуляцию нефти через установку. По известному числу импульсов и времени рассчитывается расход нефти через поверяемый расходомер. Сравнение этих данных в электронном блоке поз­воляем определить погрешность поверяемого расходомера. Для более точного определения погрешности поверку проводят в не­сколько приемом. Среднее арифметическое погрешностей при­нимают зa погрешность данного расходомера до следующей его поверки.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...