Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Электронные носители информации




Вообще говоря, все рассмотренные ранее носители тоже косвенно связаны с электроникой. Однако имеется вид носителей, где информации хранится не на магнитных/оптических дисках, а в микросхемах памяти. Эти микросхемы выполнены по FLASH-технологии, поэтому такие устройства иногда называют FLASH-дисками (в народе просто «флэшка»). Микросхема, как можно догадаться, диском не является. Однако операционные системы носители информации с FLASH-памятью определяют как диск (для удобства пользователя), поэтому название «диск» имеет право на существование.

Флэш-память (англ. Flash-Memory) — разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Флэш-память может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи — это намного больше, чем способна выдержать дискета или CD-RW. Стирание происходит участками, поэтому нельзя изменить один бит или байт без перезаписи всего участка (это ограничение относится к самому популярному на сегодня типу флэш-памяти — NAND). Преимуществом флэш-памяти над обычной является её энергонезависимость — при выключении энергии содержимое памяти сохраняется. Преимуществом флэш-памяти над жёсткими дисками, CD-ROM-ами, DVD является отсутствие движущихся частей. Поэтому флэш-память более компактна, дешева (с учётом стоимости устройств чтения-записи) и обеспечивает более быстрый доступ.

 

Хранение информации

Хранение информации — это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга — библиотека, картина — музей, фотография — альбом). Этот процесс такой же древний, как и жизнь человеческой цивилизации. Уже в древности человек столкнулся с необходимостью хранения информации: зарубки на деревьях, чтобы не заблудиться во время охоты; счет предметов с помощью камешков, узелков; изображение животных и эпизодов охоты на стенах пещер.

ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.

Информационная система — это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации. Наличие таких процедур — главная особенность информационных систем, отличающих их от простых скоплений информационных материалов.

 

От информации к данным

Человек по-разному подходит к хранению информации. Все зависит от того сколько ее и как долго ее нужно хранить. Если информации немного ее можно запомнить в уме. Нетрудно запомнить имя своего друга и его фамилию. А если нужно запомнить его номер телефона и домашний адрес мы пользуемся записной книжкой. Когда информация запомнена (сохранена) ее называют данные.

Данные в компьютере имеют различное назначение. Некоторые из них нужны только в течение короткого периода, другие должны храниться длительное время. Вообще говоря, в компьютере есть довольно много «хитрых» устройств, которые предназначены для хранения информации. Например, регистры процессора, регистровая КЭШ-память и т.п. Но большинство «простых смертных» даже не слышали таких «страшных» слов. Поэтому мы ограничимся рассмотрением оперативной памяти (ОЗУ) и постоянной памяти, к которой относятся уже рассмотренные нами носители информации.

 

Оперативная память компьютера

Как уже было сказано, в компьютере тоже есть несколько средств для хранения информации. Самый быстрый способ запомнить данные — это записать их в электронные микросхемы. Такая память называется оперативной памятью. Оперативная память состоит из ячеек. В каждой ячейке может храниться один байт данных.

У каждой ячейки есть свои адрес. Можно считать, что это как бы номер ячейки, поэтому такие ячейки еще называют адресными ячейками. Когда компьютер отправляет данные на хранение в оперативную память, он запоминает адреса, в которые эти данные помещены. Обращаясь к адресной ячейке, компьютер находит в ней байт данных.

 

Регенерация оперативной памяти

Адресная ячейка оперативной памяти хранит один байт, а поскольку байт состоит из восьми битов, то в ней есть восемь битовых ячеек. Каждая битовая ячейка микросхемы оперативной памяти хранит электрический заряд.

Заряды не могут храниться в ячейках долго — они «стекают». Всего за несколько десятых долей секунды заряд в ячейке уменьшается настолько, что данные утрачиваются.

 

Дисковая память

Для постоянного хранения данных используют носители информации (см. раздел «Виды носителей информации»). Компакт диски и дискеты имеют относительно небольшое быстродействие, поэтому большая часть информации, к которой необходим постоянный доступ, хранится на жестком диске. Вся информация на диске хранится в виде файлов. Для управления доступом к информации существует файловая система. Имеется несколько типов файловых систем.

 

Структура данных на диске

Чтобы данные можно было не только записать на жесткий диск, а потом еще и прочитать, надо точно знать, что и куда было записано. У всех данных должен быть адрес. У каждой книги в библиотеке есть свой зал, стеллаж, полка и инвентарный номер — это как бы ее адрес. По такому адресу книгу можно найти. Все данные, которые записываются на жесткий диск, тоже должны иметь адрес, иначе их не разыскать.

 

Файловые системы

Стоит отметить, что структура данных на диске зависит от типа файловой системы. Все файловые системы состоят из структур, необходимых для хранения и управления данными. Эти структуры обычно включают загрузочную запись операционной системы, каталоги и файлы. Файловая система также исполняет три главных функции:

1. Отслеживание занятого и свободного места

2. Поддержка имен каталогов и файлов

3. Отслеживание физического местоположения каждого файла на диске.

Различные файловые системы используются различными операционными системами (ОС). Некоторые OС могут распознавать только одну файловую систему, в то время как другие OС могут распознавать несколько. Некоторые из наиболее распространенных файловых систем:

  • FAT (File Allocation Table)
  • FAT32 (File Allocation Table 32)
  • NTFS (New Technology File System)
  • HPFS (High Performance File System)
  • NetWare File System
  • Linux Ext2 и Linux Swap

 

FAT

Файловая система FAT используется DOS, Windows 3.x и Windows 95. Файловая система FAT также доступна в Windows 98/Me/NT/2000 и OS/2.

Файловая система FAT реализуется при помощи File Allocation Table (FAT - Таблицы Распределения Файлов) и кластеров. FAT - сердце файловой системы. Для безопасности FAT имеет дубликат, чтобы защитить ее данные от случайного стирания или неисправности. Кластер - самая маленькая единица системы FAT для хранения данных. Один кластер состоит из фиксированного числа секторов диска. В FAT записано, какие кластеры используются, какие являются свободными, и где файлы расположены в пределах кластеров.

 

FAT-32

FAT32 - файловая система, которая может использоваться Windows 95 OEM Service Release 2 (версия 4.00.950B), Windows 98, Windows Me и Windows 2000. Однако, DOS, Windows 3.x, Windows NT 3.51/4.0, более ранние версии Windows 95 и OS/2 не распознают FAT32 и не могут загружать или использовать файлы на диске или разделе FAT32.

FAT32 - развитие файловой системы FAT. Она основана на 32-битовой таблице распределения файлов, более быстрой, чем 16-битовые таблицы, используемые системой FAT. В результате, FAT32 поддерживает диски или разделы намного большего размера (до 2 ТБ).

 

NTFS

NTFS (Новая Технология Файловой Системы) доступна только Windows NT/2000. NTFS не рекомендуется использовать на дисках размером менее 400 МБ, потому что она требует много места для структур системы.

Центральная структура файловой системы NTFS - это MFT (Master File Table). NTFS сохраняет множество копий критической части таблицы для защиты от неполадок и потери данных.

 

HPFS

HPFS (Файловая система с высокой производительностью) - привилегированная файловая система для OS/2, которая также поддерживается старшими версиями Windows NT.

В отличие от файловых систем FAT, HPFS сортирует свои каталоги, основываясь на именах файлов. HPFS также использует более эффективную структуру для организации каталога. В результате доступ к файлу часто быстрее и место используется более эффективно, чем с файловой системой FAT.

HPFS распределяет данные файла в секторах, а не в кластерах. Чтобы сохранить дорожку, которая имеет секторы или не используется, HPFS организовывает диск или раздел в виде групп по 8 МБ. Такое группирование улучшает производительность, потому что головки чтения/записи не должны возвращаться на нулевую дорожку каждый раз, когда ОС нуждается в доступе к информации о доступном месте или местоположении необходимого файла.

 

NetWare File System

Операционная система Novell NetWare использует файловую систему NetWare, которая была разработана специально для использования службами NetWare.

 

Linux Ext2 и Linux Swap

Файловые системы Linux Ext2 и Linux были разработаны для ОС Linux OS (Версия UNIX для свободно распространения). Файловая система Linux Ext2 поддерживает диск или раздел с максимальным размером 4 ТБ.

 

Каталоги и путь к файлу

Рассмотрим для примера структуру дискового пространства системы FAT, как самой простой.

Информационная структура дискового пространства - это внешнее представление дискового пространства, ориентированное на пользователя и определяемое такими элементами, как том (логический диск), каталог (папка, директория) и файл. Эти элементы используются при общении пользователя с операционной системой. Общение осуществляется с помощью команд, выполняющих операции доступа к файлам и каталогам.

 

Источники информации

1. Информатика: Учебник/под ред. Н.В. Макаровой. - М.: Финансы и статистика, 2000. - 768 с.

2. 2. Информатика. Базовый курс. Учебник для Вузов/под ред. С.В. Симо-новича, - СПб.: Питер, 2000.

3. 3. Симонович С. В., Евсеев Г.А., Практическая информатика, Учебное пособие. М.: АСТпресс, 1999.

4. 4. Фигурнов В. Э. IBM PC для пользователя. М.: Инфра-М, 2001 г.

5. 5. Симонович С.В., Евсеев Г.А., Алексеев А.Г. Специальная информатика, Учебное пособие. М.: АСТпресс, 1999.

6. 6. Информатика: Практикум по технологии работы на компьютере./ Под ред. Н.В. Макаровой. - М.: Финансы и статистика, 2000.

7. 7. А.В.Могилев, Н.И.Пак, Е.К.Хеннер, Информатика, Учебник для ВУЗов – М.: Издательство Academa, 1999.

8. 8. Денисов А., Вихарев И., Белов А.. Самоучитель Интернет. – Спб: Питер, 2001. - 461 с.

9. 9. Евдокимов В.В. и др. Экономическая информатика. Учебник для вузов. Под ред. д. э. н., проф. В.В. Евдокимова. СПб.: Питер паблишинг, 1997.

10. 10. Основы современных компьютерных технологий. Ред. Хомченко А.Д.

11. 11. Бойс Д. Осваиваем Windows 95. Русская версия. 1997.

12. 12. Шкаев А.В. Руководство по работе на персональном компьютере. Спра-вочник. М.: Радио и связь, 1994 г.

13. 13. Савельев А.Я., Сазонов Б.А., Лукьянов Б.А. Персональный компьютер для всех. Хранение и обработка информации. Т.1 М.: Высшая школа, 1991.

14. 14. Брябрин В.М. Программное обеспечение персональных ЭВМ. М.: Наука, 1990.

15. 15. Мартин, Метьюз. Excel для Windows 95/97. М.: АВЕ. - 1996.

16. 16. Экономическая информатика. – СПб.: Питер, 1997. – 592 с.

17. 17. Могилев А.В. и др. Информатика. – М., 1999. – 816 с.

18. 18. Комягин В.Б., Коцюбинский А.О. Excel 7.0 в примерах. М.: Нолидж, 1996.

19. 19. Крамм. Р. Программирование в Access для чайников. К.: Диалектика, 1996.

20. 20. Фролов А.В., Фролов Г.В. Глобальные сети компьютеров. Практическое введение в Internet, E-Mail, FTP, WWW и HTML. М.: Диалог-МИФИ, 1996.

21. 21. Коцюбинский А.О., Грошев С.В. Современный самоучитель работы в сети Интернет. М.: Триумф, 1997.

22. 22. Гончаров А. HTML в примерах. СПб.: Питер, 1997.

23. 23. Левин А. Самоучитель работы на персональном компьютере. М., 1995.

24. 24. Пасько. Microsoft Office - 97. К.: BHV, 1998.

25. 25. Рогов В.П. Excel-97. Серия “Без проблем”. М.: Бином. 1997.

26. 26. Каратыгин С.А. Access-97 (серия “Без проблем”) - М., 1997.

27. 27. Пасько В. Microsoft Office’97, К.: BHV, 1998.

28. 28. Гончаров А. Excel 7.0 в примерах. Спб.: Питер, 1996.

29. 29. Гурин Н.И. Работа на персональном компьютере. М., 1994.

30. 30. Абрамов С.А. Начала информатики. М.: 1989.

31. 31. Острейковский В.А. Информатика. - М.: Высшая школа, 1999.

32. 32. Тюрин Ю.Н., Макаров А.А. Статистический анализ данных на компьютере. Под ред. В.Э. Фигурнова. М.: ИНФРА-М, 1998.

33. 33. Дюк В. Обработка данных на ПК в примерах. СПб.: Питер. - 1997г.

34. 34. Основы компьютерных технологий. – СПб.: Корона, 1998. – 448 с.

35. 35. Шафрин Ю.А. Основы компьютерной технологии. – М.: АБВ, 1997. – 656 с.

36. 36. Д.А. Поспелов. Информатика: Энциклопедический словарь для начинающих. – М.: Педагогика-Пресс, 1994. – 352 с.

37. 37. Основы современных компьютерных технологий: Учебное пособие/под. ред. Хомоненко. – СПб.: КОРОНА, 1998.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...