Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Задача: исследование трансмембранных ионных токов




Живые клетки покрыты мембраной, структурную основу которой составляет двойной слой липидов, слабо проницаемый для воды и практически непроницаемый для ионов. Каждая клетка должна обмениваться с внешней средой различными веществами и в частности ионами. Перенос ионов через мембрану играет важную роль в процессах возбуждения клетки и передачи сигналов. Ионы проникают в клетку и выходят из нее через встроенные в мембрану белковые структуры — каналы и транспортеры.

Транспортеры — это мембранные белки, которые соединяются с переносимым веществом по одну сторону мембраны, переносят это вещество через мембрану и затем его освобождают. Такой перенос становится возможным потому, что в результате соединения с веществом транспортер меняет конформацию (т.е. форму, ориентацию). Бытовой аналогией транспортера является лифт, который "присоединяет" к себе людей, переносит их на другой этаж и "освобождает". Важнейший транспортер в клетках эукариот — это натрий-калиевый насос. Для работы этого насоса требуется энергия, которую он черпает из запасенной в клетке АТФ. За один цикл своей работы насос выводит из клетки 3 иона Na+ и вводит в нее 2 иона K+. Одна молекула этого транспортера совершает примерно 103 циклов в секунду. Сходная частота циклов характерна и для других видов транспортеров.

Каналы — это белки, которые выполняют функцию мембранных пор, так как формируют отверстия, сквозь которые могут проходить ионы. Мембранные каналы селективны — проницаемы только для определенных веществ. Селективность обусловлена радиусом пор и распределением заряженных функциональных групп в них. Существуют каналы, селективно пропускающие ионы натрия (натриевые каналы) и ионы калия (калиевые каналы), а также хлоридные каналы. Для каждого вида ионов существует не один, а довольно много видов каналов. Сквозь один канал за секунду проходит 106 — 107 ионов.

Несмотря на фундаментальные различия в механизме транспорта через каналы и транспортеры, они могут быть образованы высоко гомологичными белками. Так, недавно получены данные, что мутация единственной аминокислоты в белке транспортера двухвалентных металлов DMT1 приводит к его превращению в кальциевый канал. Кроме того, существует по крайней мере один транспортер (хлорид-бикарбонатный обменник эритроцитов), осуществляющий 105 переносов в секунду, что очень близко к скоростям, характерным для каналов, и заставляет предположить существование у него некоего «промежуточного» между каналами и транспортерами механизма.

Так как ионы — это электрически заряженные молекулы, при их переходе через мембранные каналы переносится и заряд, а значит, через мембрану течет электрический ток. Этот ток можно измерить. Чем больше разность потенциалов между сторонами мембраны, тем больше ток. Проводимость (отношение тока к разности потенциалов) одиночного канала в открытом состоянии варьируется в зависимости от вида канала, от 1-2 до 30-50 пикосименсов. Это значит, что при разности потенциалов равном 100 мВ через канал потечет ток в несколько пикоампер.

Решение: история вопроса.

Один внутриклеточный электрод. Измерение разности потенциалов.

Первоначально электрические явления на клеточных мембранах измеряли с помощью острых стеклянных микроэлектродов, вводившихся в клетку. Техника с одним внутриклеточным электродом позволяет измерять разность потенциалов или ток, но не даёт возможности фиксировать их на определенном уровне, так что во время исследования одновременно меняются оба параметра. Кроме того, классические острые микроэлектроды дают возможность измерения исключительно на целой клетке, которая имеет, как правило, различные типы белков и транспортеров. Все это, вместе взятое, сильно затрудняет интерпретацию данных, полученных таким методом.

Двухэлектродная фиксация потенциала.

Тот факт, что фиксация трансмембранного потенциала позволит измерять мембранную проводимость по изменениям тока при постоянном напряжении, был впервые осознан еще в 30-х гг. XX века, и тогда же английские исследователи Алан Ходжкин и Эндрю Хаксли (Alan Hodgkin and Andrew Huxley) начали эксперименты с двухэлектродной фиксацией потенциала (}).

Суть метода состоит в следующем. В клетку вводятся два электрода, еще один - электрод сравнения - остается вне клетки. Первый внутриклеточный электрод служит для измерения трансмембранной разности потенциалов (то есть разности потенциалов между ним и электродом сравнения), второй может подавать ток. Специальное устройство — генератор сигнала — задает командный потенциал, которому должен быть равен трансмембранный потенциал. Измеренный трансмембранный потенциал подается на вход устройства сравнения, которое вычитает измеренный потенциал из командного и, в зависимости от величины разности, подает ток на токовый электрод, так, чтобы скомпенсировать эту разницу. Монитор тока, в свою очередь, постоянно измеряет величину тока, которая для этого необходима. В 1930-х и 40-х годах, когда работали Ходжкин и Хаксли, не существовало микроэлектродов, поэтому в качестве внутриклеточных электородов использовались тонкие проволоки. Это определило выбор объекта — единственной животной клеткой, в которую можно было ввести две изолированные друг от друга проволоки, был гигантский аксон кальмара. На этом объекте методом двухэлектродной фиксации потенциала исследователи выполнили эксперименты, в которых была установлена ионная природа потенциала действия и впервые постулировано существование ионных каналов(Нобелевская премия 1963 г., поделена с Дж.Экклзом, получившим ее за исследования в области синаптической передачи). Двухэлектроднная фиксация потенциала применяется и в настоящее время, с использованием острых стреклянных микроэлектродов, однако даже с ними эта методика имеет существенные ограничения: во-первых, два электрода могут быть введены только в весьма крупную клетку (например, ооцит лягушки), во-вторых, она позволяет измерять проводимость всей клеточной мембраны, со всеми, как правило разнородными, каналами в ней.

Решение: patch-clamp, его варианты и конфигурации

Гигаомный контакт

В конце семидесятых годов XX в. E.Neher и B.Sakmann обнаружили, что если стеклянной пипеткой с диаметром 1-2 микрона коснуться клеточной мембраны, то на границе "мембрана — стекло" образуется контакт с сопротивлением в несколько гигаОм — это так называемый гигаомный контакт. Он позволяет изолировать от внешней среды и от остальной части мембраны тот ее фрагмент, который находится внутри пипетки. Отграниченный пипеткой фрагмент мембраны и называется patch — «заплатка», слово clamp (фиксация) в названии метода имеет два значения: (1) захват и изоляция этой «заплатки» и (2) фиксация трансмембранного потенциала или тока в изолированном фрагменте, или, как будет описано позже, целой клетке. В пипетку, заполненную раствором электролита, помещается хлор-серебряный электрод, второй электрод размещается внеклеточно, в омывающей жидкости. Отличие электрической схемы от ранее описанной для двухэлектродной фиксации заключается в том что один и тот же электрод используется как для измерения разности потенциалов, так и для подачи тока. В основе установки, тем не менее, по-прежнему лежат усилитель мембранного потенциала, блок сравнения и монитор тока.

На фото 1 показана часть такой установки.

Огромная сфера, часть которой видна на мониторе в центре фотографии — это клетка (ооцит лягушки Xenopus laevis), находящийся в данный момент на предметном столике микроскопа, к нему подведена patch-пипетка, ее диаметр у носика — около 3 микрон. После установления гигаомного контакта она изолирует фрагмент мембраны площадью приблизительно 7 мкм2, и если в этом фрагменте окажутся ионные каналы, их ток можно будет записывать.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...