Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Рождение и эволюция галактик




Итак, первым условием появления галактик во Вселенной стало появление случайных скоплений и сгущений вещества в однородной Вселенной. Впервые подобная мысль была высказана И. Ньютоном, который утверждал, что если бы вещество было равномерно рассеяно по бесконечному пространству, то оно никогда бы не собралось в единую массу. Оно собиралось бы частями в разных местах бесконечного пространства. Данная идея Ньютона стала одним из краеугольных камней современной космогонии.

Второе условие появления галактик — наличие малых возмущений, флуктуаций вещества, ведущих к отклонению от однородности и изотропности пространства. Именно флуктуации и стали теми «затравками», которые привели к появлению более крупных уплотнений вещества. Эти процессы можно представить по аналогии с процессами образования облаков в атмосфере Земли. Известно, что водяной пар конденсируется на крохотных частичках — ядрах конденсации.

В середине XX в. были проведены расчеты, описывающие поведение таких сгущений. В частности, было доказано, что в расширяющейся Вселенной участки среды с большей плотностью расширяются медленнее, чем Вселенная в целом. Эти области постепенно отстают в расширении от остальной Вселенной, и в какой-то момент времени они совсем перестают расширяться. Изолированные участки вещества, как правило, очень велики по массе: она составляет в среднем 1015—1016 масс Солнца. Данные массы под действием гравитации начинают сжиматься, причем, происходит это весьма своеобразно — анизотропно. Вначале исходные объекты имеют форму куба, а затем сжимаются в пластинку — «блин». Первоначально изолированные друг от друга плоские «блины» очень скоро вырастают в плотные слои. Эти слои пересекаются, и в процессе их взаимодействия образуется ячеисто-сетчатая структура, где стенками огромных пустот служат «блины». Отдельный «блин» представляет собой сверхскопление галактик и имеет уплощенную форму. Эти первичные сгустки, продолжая сжиматься, становятся сферически симметричными. Кроме того, внутри себя они одновременно фрагментируются на звезды.

Существуют предположения относительно того, почему чаще встречаются спиральные галактики (их около 80%), чем галактики других типов (эллиптические и неправильные). Возможно, спиральные галактики образуются в результате слияния протогалактик в скоплениях. Вначале образуется объект неправильной формы, затем за несколько сотен миллионов лет (немного по космическим меркам) неровности сглаживаются, и образуется массивная эллип-


J


тическая галактика. Постепенно в результате вращения такой галактики может образовываться дискообразная структура, которая со временем будет приобретать облик спиральной галактики. Подтверждением этой точки зрения является наличие галактик переходного типа, занимающих промежуточное положение между спиральными и эллиптическими галактиками.

Также есть предположение, почему в скоплениях галактик присутствует одна гигантская галактика, а остальные — мелкие. Считается, что вначале гигантская галактика лишь немного превосходила по своим размерам соседние галактики. Но по мере того, как галактика двигалась по спиральной траектории к центру скопления, она заглатывала более мелкие системы. Мелкие галактики, обреченные на «съедение», называют галактиками-миссионерами.

Были выдвинуты гипотезы, объясняющие вращение галактик. Сегодня считается, что на ранних стадиях эволюции протогалактики были гораздо больше, чем сейчас. Кроме того, космологическое расширение не успело их разогнать далеко друг от друга, поэтому между ними возникали значительные гравитационные силы. Эти силы принимали вид приливных взаимодействий, которые и вызывали вращение галактик.

Галактики существуют в виде групп (несколько галактик), скоплений (сотни галактик) и облаков скоплений (тысячи галактик). Одиночные галактики во Вселенной встречаются очень редко. Средние расстояния между галактиками в группах и скоплениях в 10—20 раз больше, чем размеры самых крупных галактик. Гигантские галактики имеют размеры до 18 млн. световых лет. Наиболее удаленные из наблюдаемых ныне галактик находятся на расстоянии 10 млрд. световых лет. Свет этих звезд идет к нам миллионы лет, поэтому мы наблюдаем их такими, какими они были много световых лет назад. Пространство между галактиками заполнено газом, пылью и разного рода излучениями. Основное вещество, составляющее межзвездный газ, — водород, на втором месте — гелий. Следует отметить, что водород и гелий — наиболее распространенные вещества не только в межзвездном пространстве, но и вообще во Вселенной.

Наша Галактика — Млечный путь — имеет форму диска с выпуклостью в центре — ядром, от которого отходят спиралевидные рукава. Ее толщина — 1,5 тыс. световых лет, а диаметр — 100 тыс. световых лет. Возраст нашей Галактики составляет около 15 млрд. лет. Она вращается довольно сложным образом: значительная часть ее галактической материи вращается дифференциально, как планеты вращаются вокруг Солнца, не обращая внимания на то, по каким орбитам движутся другие, достаточно далекие космические тела, и скорость вращения этих тел уменьшается с увеличением их


расстояния от центра. Другая часть диска нашей Галактики вращается твердотельно, как музыкальный диск, крутящийся на проигрывателе. В этой части галактического диска угловая скорость вращения одинакова для любой точки. Наше Солнце находится в таком участке Галактики, в котором скорости твердотельного и дифференциального вращения равны. Такое место называется коротаци-онным кругом. В нем создаются особые, спокойные и стационарные условия для процессов звездообразования.

Рождение и эволюция звезд

Звезды рождаются из космического вещества в результате его конденсации под действием гравитационных, магнитных и других сил. Под влиянием сил всемирного тяготения из газового облака образуется плотный шар — протозвезда, эволюция которой проходит три этапа.

Первый этап эволюции связан с обособлением и уплотнением космического вещества. Второй представляет собой стремительное сжатие протозвезды. В какой-то момент давление газа внутри про-тозвезды возрастает, что замедляет процесс ее сжатия, однако температура во внутренних областях пока остается недостаточной для начала термоядерной реакции. На третьем этапе протозвезда продолжает сжиматься, а ее температура — повышаться, что приводит к началу термоядерной реакции. Давление газа, вытекающего из звезды, уравновешивается силой притяжения, и газовый шар перестает сжиматься. Образуется равновесный объект — звезда. Такая звезда является саморегулирующейся системой. Если температура внутри не повышается, то звезда раздувается. В свою очередь, остывание звезды приводит к ее последующему сжатию и разогреванию, ядерные реакции в ней ускоряются. Таким образом, температурный баланс оказывается восстановлен. Процесс преобразования протозвезды в звезду растягивается на миллионы лет, что сравнительно немного по космическим масштабам.

Рождение звезд в галактиках происходит непрерывно. Этот процесс компенсирует также непрерывно происходящую смерть звезд. Поэтому галактики состоят из старых и молодых звезд. Самые старые звезды сосредоточены в шаровых скоплениях, их возраст сравним с возрастом галактики. Эти звезды формировались, когда про-тогалактическое облако распадалось на все более мелкие сгустки. Молодые звезды (возраст около 100 тыс. лет) существуют за счет энергии гравитационного сжатия, которая разогревает центральную область звезды до температуры 10—15 млн. К и «запускает» термоядерную реакцию преобразования водорода в гелий. Именно термоядерная реакция является источником собственного свечения звезд.


С момента начала термоядерной реакции, превращающей водород в гелий, звезда типа нашего Солнца переходит на так называемую главную последовательность, в соответствии с которой будут изменяться с течением времени характеристики звезды: ее светимость, температура, радиус, химический состав и масса. После выгорания водорода в центральной зоне у звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое вблизи поверхности этого ядра. Ядерные реакции перемещаются на периферию звезды. Выгоревшее ядро начинает сжиматься, а внешняя оболочка — расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой, и звезда переходит в стадию красного гиганта. С этого момента звезда выходит на завершающий этап своей жизни. Наше Солнце это ждет примерно через 8 млрд. лет. При этом его размеры увеличатся до орбиты Меркурия, а может быть, и до орбиты Земли, так что от планет земной группы ничего не останется (или останутся оплавленные камни).

Для красного гиганта характерна низкая внешняя, но очень высокая внутренняя температура. При этом в термоядерные процессы включаются все более тяжелые ядра, что приводит к синтезу химических элементов и непрерывной потере красным гигантом вещества, которое выбрасывается в межзвездное пространство. Так, только за один год Солнце, находясь в стадии красного гиганта, может потерять одну миллионную часть своего веса. Всего за десять — сто тысяч лет от красного гиганта остается лишь центральное гелиевое ядро, и звезда становится белым карликом. Таким образом, белый карлик как бы вызревает внутри красного гиганта, а затем сбрасывает остатки оболочки, поверхностных слоев, которые образуют планетарную туманность, окружающую звезду.

Белые карлики невелики по своим размерам — их диаметр даже меньше диаметра Земли, хотя их масса сравнима с солнечной. Плотность такой звезды в миллиарды раз больше плотности воды. Кубический сантиметр его вещества весит больше тонны. Тем не менее, это вещество является газом, хотя и чудовищной плотности. Вещество, из которого состоит белый карлик, — очень плотный ионизированный газ, состоящий из ядер атомов и отдельных электронов.

В белых карликах термоядерные реакции практически не идут, они возможны лишь в атмосфере этих звезд, куда попадает водород из межзвездной среды. В основном эти звезды светят за счет огромных запасов тепловой энергии. Время их охлаждения — сотни миллионов лет. Постепенно белый карлик остывает, цвет его меняется от белого к желтому, а затем — к красному. Наконец, он превращается в черный карлик — мертвую холодную маленькую звезду


размером с земной шар, который невозможно увидеть из другой планетной системы.

Несколько иначе развиваются более массивные звезды. Они живут всего несколько десятков миллионов лет. В них очень быстро выгорает водород, и они превращаются в красные гиганты всего за 2,5 млн. лет. При этом в их гелиевом ядре температура повышается до нескольких сотен миллионов градусов. Такая температура дает возможность для протекания реакций углеродного цикла (слияние ядер гелия, приводящее к образованию углерода). Ядро углерода, в свою очередь, может присоединить еще одно ядро гелия и образовать ядро кислорода, неона и т.д. вплоть до кремния. Выгорающее ядро звезды сжимается, и температура в нем поднимается до 3—10 млрд. градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа — самого устойчивого во всей последовательности химического элемента. Более тяжелые химические элементы — от железа до висмута также образуются в недрах красных гигантов, в процессе медленного захвата нейтронов. При этом энергия не выделяется, как при термоядерных реакциях, а, наоборот, поглощается. В результате сжатие звезды все убыстряется.

Образование же наиболее тяжелых ядер, замыкающих таблицу Менделеева, предположительно происходит в оболочках взрывающихся звезд, при их превращении в новые или сверхновые звезды, которыми становятся некоторые красные гиганты. В зашлакованной звезде нарушается равновесие, электронный газ более не способен противостоять давлению ядерного газа. Наступает коллапс — катастрофическое сжатие звезды, она «взрывается внутрь». Но если отталкивание частиц или какие-либо другие причины все же останавливают этот коллапс, происходит мощный взрыв — вспышка сверхновой звезды. Одновременно при этом в окружающее пространство сбрасывается не только оболочка звезды, но и до 90% ее массы, что приводит к образованию газовых туманностей. При этом светимость звезды увеличивается в миллиарды раз. Так, был зафиксирован взрыв сверхновой звезды в 1054 г. В китайских летописях было записано, что она видна днем, как Венера, в течение 23 дней. В наше время астрономы выяснили, что эта сверхновая звезда оставила после себя Крабовидную туманность, являющуюся мощным источником радиоизлучения.

Взрыв сверхновой звезды сопровождается выделением чудовищного количества энергии. При этом рождаются космические лучи, намного повышающие естественный радиационный фон и нормальные дозы космического излучения. Так, астрофизики подсчитали, что примерно раз в 10 млн. лет сверхновые звезды вспыхивают в непосредственной близости от Солнца, повышая естественный фон в 7 тысяч раз. Это чревато серьезнейшими мутациями


живых организмов на Земле. Кроме того, при взрыве сверхновых идет сброс всей внешней оболочки звезды вместе с накопившимися в ней «шлаками» — химическими элементами, результатами деятельности нуклеосинтеза. Поэтому межзвездная среда сравнительно быстро обретает все известные на сегодняшний день химические элементы тяжелее гелия. Звезды следующих поколений, в том числе и Солнце, с самого начала содержат в своем составе и в составе окружающего их газопылевого облака примесь тяжелых элементов.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...