Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Медицинская вискозиметрия. Принцип работы медицинского вискозиметра.




Субъективные характеристики звука, их связь с объективными.

Звук- механические колебания, распространяющиеся в упругих средах в виде продольных волн с частотой от 16 Гц до 20 КГц и воспринимаемые человеческим ухом. Субъективные характеристики его:

Тембр-окраска звука, определяемая его гармоническим спектром. Различные спектры соответствуют различному тембру даже в том случае, если основной тон их одинаков.

Высота тона - субъективная оценка звукового сигнала, зависящая от частоты звука и его интенсивности. Чем больше частота основного тона, тем ниже высота восприятия звука.

Громкость - субъективная оценка, характеризующая уровень интенсивности. Интенсивность звука зависит от источника (чем больше площадь поверхности тела, тем лучше оно издает звук) и от помещения, в котором находится источник звука. После прекращения действия источника звук не исчезает внезапно, а рассеивается, отражаясь от поверхностей помещения. Время, за которое звук рассеивается в помещении является основной характеристикой, которую учитывают при проэктировке акустических помещений, в каждом конкретном случае добиваясь наиболее оптимальных характеристик.

Закон Вебера-Фехнера (словесная формулировка, формула, пояснение; величины предела слышимости и предела болевого ощущения).


Закон Вебера-Фехнера.
Если раздражение увеличивается в геометрической прогрессии, то ощущение этого раздражения возрастает в арифметической прогрессии:
Е=kLg(l/lо), где E-громкость k-коэффициент пропорциональности lо-порог слышимости l-интенсивность. Предел слышимости 16 Гц-20кГц, предел болевого ощущения 140 дБ для тона и 120 дБ для шума.

 

Аудиограмма. Аудиометрия. Графики, пояснения, применения в медицине.


Аудиограмма-метод измерения остроты слуха (аудиометрия). Прибор оудиометр определяет порог слухового ощущения на разных частотах-полученная кривая (аудиограмма) помогает диагностировать заболевания органов слуха через сравнение аудиограмм здорового человека и проверяемого. Кривая отражает зависимость интенсивности звука (ось у) от частоты звуковых колебаний (ось х) на пороге слышимости. График строили в первой лабе.

График: По горизонтальной оси откладываются частоты (от 125 до 8000 Гц), а по вертикальной – пороги слышимости на соответствующих частотах, т.е. минимальные уровни звукового давления сигнала, при которых пациент слышит звук. При построении аудиограммы значения этих порогов измеряются специальным прибором – аудиометром. По характеру данного графика можно судить о нарушениях органа слуха и методах и их коррекции. Аудиометры широко используются в современной диагностической медицине для определения остроты слуха человека.

 

Инфразвук, диапазон частот; эффекты и механизмы воздействия инфразвука на организм человека, частоты акустических резонансов в организме человека.

Инфразвук-механические волны с частотами меньше воспринимаемых человеческим ухом (20 гц). Влияние на организм-вызывает усталость, головную боль, сонливость, раздражительность. Механизм действия имеет резонансную природу. Резонанс наступает при близких значениях частоты. Собственные частоты организма довольно низкие и легко резонируют с инфразвуком, что увеличивает силу колебаний.

 

 

Ультразвук; воздействие ультразвука на организм, применение в медицине.

Ультразвуком называют механические колебания и волны с частотами более 20 кГц.
Воздействие на организм:
*механическое
*тепловое
*химическое (микровибрации на клеточном и субклеточном уровне, разрушение биомакромолекул).

Применение в медицине:

+Эхоэнцефалография- определение опухолей и отека головного мозга
+ультразвуковая кардиография-измерение размеров сердца в динамике
+ультразвуковая физиотерапия - тепловое воздействие на ткани.
+дезинфекция помещений
+в фармации дробление веществ для создания мелкодисперсных суспензий.

Пульсовая волна. Определение, особенности распространения по различным отделам сердечно-сосудистой системы, длина волны, скорость распространения, механизмы распространения.

 

Пульсовая волна – волна повышенного давления, распространяющаяся по аорте и артериям при выбросе крови из левого желудочка в период систолы.

Особенности распространения по различным отделам сердечно-сосудистой системы

Пульсовая волна- не является гармонической, а есть сумма гармонических волн. Предположим, что пульс -волна распространяется по сосуду вдоль оси Х со скоростью Ʊ. Вязкость крови и упруговязкие свойства стенок сосудов уменьшают амплитуду волны.

р=р0е-χхcos(ω(t-x/Ʊ) ← уравнение пульсовой волны

р0- амплитуда давления в пульсовой волне

х- расстояние от сердца до произвольной точки

t- время

χ- константа, определяющая затухание волны

Скорость распространения пул волны

Формула Моенса-Кортевега:

Ʊ=√Еh/pd

Е- модуль упругости

h- толщина стенки сосуда

P-плотность вещ сосуда

d- диаметр сосуда

(в аорте 5,5 - 8 м / с, а в периферических артериях - 6 - 9 5 м / с). С возрастом по мере понижения эластичности сосудов скорость распространения пульсовой волны, особенно в аорте, увеличивается. Скорость пул волны не зависит от скорости крови.

 

Длина волны находится из формулы:

Λ= 2πƱ/ω

ω-круговая частота колебаний

Механизм распространения

Систолический объем крови, выбрасываемый в аорту, вызывает ее растяжение и повышение в ней давления. В результате того, что стенки аорты и артерий обладают эластичностью, систолический прирост давления не продвигает весь столб крови (как происходило бы, если бы артериальная система состояла из жестких, неэластичных трубок), а вызывает растяжение стенок артерий. Благодаря такому растяжению аорта и артериальные стволы вмещают в себя выбрасываемый сердцем систолический объем крови.

Стенки сосудов, получившие во время систолы добавочное напряжение, стремятся в силу упругости уменьшить свою емкость и во время диастолы продвигают вперед систолический объем крови. Расширение стенки и повышение давления происходит теперь на прилежащем участке. Колебания давления, волнообразно повторяясь и постепенно ослабевая, захватывают все новые и новые участки артерий, пока не достигают артериол и капилляров, где пульсовая волна гаснет.

 

Медицинская вискозиметрия. Принцип работы медицинского вискозиметра.

Вискозиметрия-совокупность методов измерения вязкости, с помощью прибора вискозиметра.

Методы вискозиметрии.

Капилярный метод(измеряем время протекания через капилляр жидкости)основан на формуле Пуазейля.

Заключается в том, что измеряется время протекания через капилляр жидкости или (газа) за определенное время t через трубку длиной L и разностью давлений р на концах трубки.

Метод выполняется только для ламинарного течения(слои жидкости текут не перемешиваясь).

Мед.вискозиметр

Применяется для определения вязкости крови. Принцип его действия основан на том,что V передвижения в капиллярах при равных температурах и давлениях зависят от вязкости этих жидкостей.

А1 и А2-градуированные капилляры

А1-в него набирают определенный объем дистиллированной воды до 0(эталонная жидкость)

А2-кровь(исследуемая жидкость)до 0

В-кран его перекрывают перед тем,как налить в А2 исследуемую жидкость. После его открывают и в А2 и А1 жидкости перемещаются.

Какая жидкость перемещается быстрее, там меньше вязкость.

Вязкость крови человека в норме-4-5 мПа.

Патология 1,7-22,9мПа(связано со скоростью оседания эритроцитов).

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...