Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Синтез L-аскорбиновой кислоты

ЛЕКЦИЯ №13

Использование рекомбинантных микроорганизмов для получения коммерческих продуктов небелковой природы.

Помимо получения белковых продуктов достижения генной инженерии можно использовать для крупномасштабного производства различных ценных низкомолекулярных небелковых соединений – витаминов, аминокислот, антибиотиков и др.

Используя технологию рекомбинантных ДНК, можно направленно изменять метаболизм мик­роорганизмов, вводя в них новые гены или мо­дифицируя уже существующие. Основной це­лью таких изменений является создание рекомбинан-тного микроорганизма с новой фер­ментативной активностью, способного превра­щать существующий субстрат в ценный про­дукт, который обычно получают только сочетанием химических и микробиологических методов.

 

Синтез L-аскорбиновой кислоты

В настоящее время для крупномасштабного про­изводства L-аскорбиновой кислоты (витамина С) используют весьма трудоемкий процесс, включа­ющий одну микробиологическую стадию и не­сколько химических; исходным субстратом для него является D-глюкоза (рис.4). На послед­нем этапе этого процесса 2-кето-L-гулоновая ки­слота (2-KLG) превращается в кислых условиях в L-аскорбиновую кислоту. Биохимические ис­следования метаболизма различных микроорга­низмов показали, что 2-KLG можно получить другим путем. Так, одни бактерии (Acetobacter, Gluconobacter и Erwinia) могут превращать глю­козу в 2,5-дикето-О-глюконовую кислоту (2,5-DKG), а другие (Corynebacterium, Brevibacterium и Arthrobacter), синтезирующие фермент 2,5-DKG-редуктазу, - преобразовывать 2,5-DKG в 2-KLG.

Использующийся в настоящее время комбинированный способ получения аскорбиновой кислоты можно было бы существенно усовершенствовать, заменив большинство химических стадий на одну микробиологическую. Эта стадия включала бы в себя совмест­ное культивирование указанных микроорганиз­мов для превращения глюкозы в 2-KLG. К сожалению, такое культивирование имеет свои трудности, поскольку эти микроор­ганизмы могут иметь разные оптимумы темпе­ратуры и рН, могут различаться также состав среды и скорость роста. Иными словами, усло­вия культивирования, оптимальные для одного организма, могут быть неприемлемы для другого, что приведет к спонтанному «вымыванию» из среды одного из них.

 

В принципе можно культивировать каждый из микроорганизмов в отдельных последователь­но расположенных ферментерах, однако такой процесс трудно будет сделать непрерывным, если для роста микроорга­низмов необходимы существенно разные среды. Поэтому наилучшим выходом из этой ситуации было бы создание одного микроорганизма, синтезирую­щего все ферменты, необходимые для превраще­ния глюкозы в 2-KLG. Erwinia herbicola осущест­вляет превращение D-глюкозы в 2,5-DKG в несколько стадий, катализируемых разными ферментами, в то время как Cotynebacterium sp. для превращения 2,5-DKG в 2-KLG необходима только одна стадия. Следовательно, наиболее простой способ создания одного микроорганиз­ма, способного превращать D-глюкозу в 2-KLG, состоит в выделении гена 2,5-ОКС-редуктазы Corynebacterium sp. и введении его в Erwinia her­bicola

После получения такие трансформированные клетки Erwinia актив­но превращали D-глюкозу непосредственно в 2-KLG, при этом собственные ферменты Erwinia, локализованные во внутренней мембране бакте­риальной клетки, преобразовывали глюкозу в 2,5-DKG, а 2,5-DKG-редуктаза, локализован­ная в цитоплазме, катализировала превращение 2,5-DKG в 2-KLG (рис.6). Таким образом, с помощью генетических манипуляций метаболи­ческие реакции, протекающие в столь разных микроорганизмах, удалось осуществить в одном из них. Этот гибрид приобрел способность син­тезировать конечный продукт комбинирован­ного метаболического пути. Такой организм можно использовать как фабрику для производ­ства 2-KLG, заменяющую первые три стадии в том процессе получения L-аскорбиновой кислоты, который используют в настоящее время.

Антибиотики

Со времени открытия пенициллина в конце 1920-х годов из различных микроорганизмов были выделены тысячи антибиотиков, обла­дающих разной специфичностью и разным ме­ханизмом действия. Их широкое применение для лечения инфекционных заболеваний помог­ло сохранить миллионы жизней. Подавляющее большинство основных антибиотиков было вы­делено из грамположительной почвенной бакте­рии Streptomyces, хотя их продуцируют также грибы и другие грамположительные и грамотрицательные бактерии.

В настоящее время в рамках обширных исследовательских программ по скринингу природных микробных сообществ каждый год ученые обнаружи­вают от 100 до 200 новых антибиотиков, многие из которых имеют уникальные структуры и характеристики. Однако получение и кли­нические испытания новых препаратов обходят­ся очень дорого и занимают много времени. Поэтому в продажу поступают не более 1-2% всех об­наруживаемых этим путем антибиотиков. Большой эффект здесь может дать технология рекомбинантных ДНК. Во-первых, с ее помощью можно созда­вать новые антибиотики с уникальной структу­рой, оказывающие более мощное воздействие на определенные микроорганизмы и обладаю­щие минимальными побочными эффектами. Во-вторых, генноинженерные подходы могут использоваться для увеличения выхода уже известных анти­биотиков и соответственно для снижения стои­мости их производства.

Однако на пути использования генно-инженерных технологий имеется целый ряд препятствий. Это связано с тем, что синтез молекул антибиотиков является сложным многостадийным процессом, включающим в себя различные типы химических реакций и требующим большого числа ферментов различных классов. Общее число генов, задействованных для их синтеза, может достигать до 1-2 и более % от общего числа генов, и они могут иметь различную локализацию в хромосомах. Все это существенно затрудняет анализ путей биосинтеза антибиотиков и идентификацию отдельных мутаций, способных увеличить выход продукта. Поэтому, пока, большинство известных в настоящее время высокопродуктивных штаммов продуцентов антибиотиков получено традиционными методами мутагенеза и селекции.

 

Синтез новых антибиотиков

Новые антибиотики с уникальными свойствами и специфичностью можно получить, проводя генноинженерные манипуляции с генами, уча­ствующими в биосинтезе уже известных анти­биотиков. Один из первых экспериментов, в хо­де которого был получены новые антибиотики, состоял в объединении в одном микроорганиз­ме двух немного различающихся путей биосин­теза родственных антибиотиков.

Суть эксперимента состояла в том, что на основе плазмиды Streptomyces pIJ2303 были сконструированы рекомбинантные плазмиды, несу­щие либо целый фрагмент хромосомной ДНК S.coelicolor длиной 32,5 т.п.н., содержащий все гены ферментов, ответственных за биосинтез антибио­тика актинородина, либо различные субклоны, несу­щие отдельные части 32,5 т.п.н.-фрагмента (например, pIJ2315). Далее этими плазмидами трансформировали штамм АМ-7161 Streptomyces sp., синтезиурующий родственный антибиотик медермицин, либо штаммы В1140 или Tu22 S. violaceoruber, синтезирующие родст­венные антибиотики гранатицин и дигидрогранатицин.

 

Все указанные антибиотики изохроманхинонового ряда (рис.7) являются кис­лотно-щелочными индикаторами, которые придают растущей культуре характерный цвет, зави­сящий от рН среды (табл.1). В свою очередь рН (и цвет) среды зависят от того, какое соеди­нение синтезируется. Мутанты родительского штамма S. coelicolor, не способные синтезиро­вать актинородин, бесцветные. Появление ок­раски после трансформации штамма АМ-7161 Streptomyces sp. либо штаммов В1140 или TU22 S. violaceoruber плазмидой, несущей все или не­сколько генов, кодирующих ферменты биосин­теза актинородина, свидетельствует о синтезе нового антибиотика (рис.7, табл.1).

 

Трансформанты штамма АМ-7161 Streptomyces sp. и штамма В1140 S. violaceoruber, содержащие плазмиду рIJ2315, синтезируют антибиотики, кодируемые и плазмидой, и хромосомной ДНК. Однако при трансформации штамма Tu22 S. vio­laceoruber плазмидой рIJ2315 наряду с актинородином синтезируется новый антибиотик — дигидрогранатиродин, а при трансформации штамма АМ-7161 Streptomuces sp. плазмидой pIJ2315 синтезируется еще один новый анти­биотик — медерродин А.

В структурном отношении эти новые анти­биотики мало отличаются от актинородина, медермицина, гранатицина и гидрогранатицина и, вероятно, образуются в том случае, когда проме­жуточный продукт одного пути биосинтеза слу­жит субстратом для фермента другого пути. Когда будут детально изучены биохимические свойст­ва различных путей биосинтеза антибиотиков, появится возможность создавать новые уни­кальные высокоспецифичные антибиотики, ма­нипулируя генами, которые кодируют соответ­ствующие ферменты.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...