Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Макроскопические параметры. Идеальный газ.




Состояние газа (так же как жидкости и твердого тела) может быть описано и без рассмотрения молекулярного строения вещества. Это делают с помощью макроскопических величин, совокупность которых однозначно определяет состояние системы. Такие величины называют параметрами состояния (или термоди­намическими параметрами). Параметрами состояния любой системы являются ее объем, давление и температура. Если в каком-либо процессе изменяется хотя бы один из параметров состояния системы, то и само состояние системы становится другим.

Величины, характеризующие состояние макроскопических тел без учета их внутреннего строения называются макроскопическими параметрами.

Идеальный газ – это модель реального газа, которая обладает следующими свойствами:

1. Молекулы пренебрежимо малы по сравнению со средним расстоянием между ними.

2. Молекулы ведут себя подобно маленьким твердым шарикам: они упруго сталкиваются между собой и со стенками сосуда, никаких других взаимодействий между ними нет.

3. Молекулы находятся в непрекращающемся хаотическом движении.

Все газы при не слишком высоких давлениях и при не слишком низких температурах близки по своим свойствам к идеальному газу. При высоких давлениях молекулы газа настолько сближа­ются, что пренебрегать их собственными размерами нельзя. При понижении температуры кинетическая энергия молекул уменьшается и становится сравнимой с их потенциальной энер­гией, следовательно, при низких температурах пренебрегать по­тенциальной энергией нельзя.

При высоких давлениях и низких темпера­турах газ не может считаться идеальным. Такой газ называют реальным. (Поведение реального газа описывается законами, отличающимися от законов идеального газа.)

2. Давление газа. Основное уравнение МКТ газа.

Давление газа определяется столкновением молекул газа со стенками сосуда.

В СИ за единицу давления принимают 1 Па.

Давление, при котором на площадь 1 м2 действует сила давления в 1 Н, называется Паскалем.

1мм.рт.ст. = 133 Па

1атм = 1ž105 Па

Одной из основных задач молекулярно-кинетической теории газа является установление количественных соотношений между макроскопическими параметрами, характеризующими состояние газа (давлением, температурой), и величинами, характеризую­щими хаотическое тепловое движение молекул газа (скоростью молекул, их кинетической энергией). Одним из таких соотноше­ний является зависимость между давлением идеального газа и средней кинетической энергией поступательного движения его молекул. Эту зависимость называют основным уравнением моле­кулярно-кинетической теории идеального газа:

или

где р — давление газа; n — концентрация молекул газа (число его молекул в единичном объеме): m0 — масса молекулы газа, — средняя квадратичная скорость движения газовых молекул;  —средняя квадратичная энергия поступатель­ного движения молекул идеального газа.

Давление идеального газа пропорционально средней кинетической энергии поступательного движения молекул и концентрации молекул.

Это давление тем больше, чем больше средняя кинетическая энергия поступательного движения молекул.

Средней квадратической скоростью называют величину, рав­ную корню квадратному из среднего арифметического значения квадратов скоростей N молекул газа:

Средней кинетической энергией поступательного движения молекул идеального газа называют величину

 С учетом основного уравнения МКТ имеем:

 

 

Из этой формулы видно, что средняя кинетическая энергия поступательного движения молекул газа пропорциональна абсолютной температуре.

В этой формуле k=1,38ž10-23 Дж/К – постоянная Больцмана.

Давление газа зависит от концентрации молекул. Эта зависимость выражается формулой:

 

Давление газа не зависит от его природы, а определяется только концентрацией молекул и температурой газа.

Численное значение средней квадратичной скорости получим из формулы

, т.к. , то

При одинаковых давлениях и температу­рах концентрация молекул всех газов одинакова. В частности, при нормальных условиях

n = Nл = 2,7ž1025 м-3.

Величину Nл называют числом Лошмидта, оно равно количеству молекул идеального газа, содержащихся в 1 м3 газа при нор­мальных условиях.

6.Закрепление материала:

А) Вопросы для фронтального опроса:

1. Что такое макроскопические параметры? Какие величины относятся к их числу? Изменяется ли состояние системы при изменении одного такого параметра?

2. Какой газ называют идеальным? Что является моделью идеального газа?

3. При каких условиях газ по своим свойствам близок к идеальному? При каких условиях и почему газ не может считаться идеальным?

4. Что называют абсолютным нулем температуры? Каков физический смысл этого понятия с точки зрения молекулярно-кинетической теории?

5. Чему равно давление идеального га­за на стенки камеры при абсолют­ном нуле температуры?

6. Определите, чему равна температу­ра абсолютного нуля в градусах Цельсия. Возможно ли охладить те­ло до температуры абсолютного нуля?

7. Каково современное представление об энергии молекул при абсолютном нуле температуры?

8. Объясните принципы построения температурных шкал Цельсия и Кельвина. Сравните между собой эти шкалы и установите формулы, выражающие соотношение между значениями температуры, измерен­ной по шкалам Кельвина и Цельсия.

Б) Решение количественных задач:

Задача №1.

Найти концентрацию молекул кислорода, если его давление 0,2 МПа, а средняя квадратичная скорость молекул равна 700 м/с.

Дано:    Решение:

υ=700 м/с

M =32·10 -3 кг/моль                   n=р/κТ

 р =0,2 МПа

n=? n=3Nа р /υ2 М = 2,3·1025.

                                                  Ответ: 2,3·1025.

Задача №2.

Определить кинетическую энергию 105  атомов гелия при температуре 47 ºС. (6,62· 10-16 Дж)

Задача №3.

 Определите температуру газу, если средняя кинетическая энергия равна 5,6 ·10-21 Дж.

(270 К)

Задача №4.

Сколько молекул содержится в 2 м3 газа при давлении 150 кПа и температуре 27 ºС.(7,2·1025 )

Задача №5.

На сколько процентов увеличивается средняя кинетическая энергия молекул газа при увеличении его температуры от 7 до 35 ºС? (На 10%)

Задача №6.

Определить число n молекул, содержащихся в объеме V = 1 мм3 воды и массу m0 молекулы воды.

Решение:

Число молекул n, содержащихся в теле некоторой массы m:

, где m - молярная масса. Так как , где r - плотность воды, то: .

Расчет в СИ: V = 10-9 м3; r = 103 ; NA = 6,021023 ; m = 1810-3 ; n = молекул.

m0 подсчитываем по формуле (3) ; .

Задача №7.

Определить число молекул содержащихся в 10 г азота.

Решение:

Расчет в СИ:

m = 10 г = 10-2 кг; m = 2810-3 ; NA = 6,021023 ; молекул.

Задача №8.

Вычислить среднюю квадратичную скорость движения молекул водорода при 00С.

Решение:

Среднюю квадратичную скорость рассчитаем по формуле (17): .

Расчет в СИ: R = 8,31 ; m = 210-3 ; Т = 273 К.

.

Проверим размерность

.

.

Задача №9.

Вычислить наиболее вероятную среднюю квадратичную и среднюю арифметическую скорости молекул азота при температуре 420 К.

Решение:

При расчетах используем формулы (18), (17) и (19).

В СИ: Т = 420 К; m = 2810-3 ; R = 8,31 .

.

.

Задача №10.

Чему равна средняя квадратичная скорость движения молекул воздуха при температуре 270С?

Решение:

Среднюю квадратичную скорость молекул воздуха вычислим по формуле (17).

. В Си: m = 2910-3 (для воздуха); Т = 2730К;

R = 8,31 .

.

Задача №11.

Вычислить среднюю энергию поступательного движения молекулы газа при 270С.

Решение:

Для расчета используем формулу (5).

.

В Си: К = 1,3810-23 ; Т = 3000К.

.

Задача №12.

Средняя квадратичная скорость молекул некоторого газа <c> = 450 м/с. Давление газа р = 50 кПа. Найти плотность r газа при этих условиях.

Решение:

Основное уравнение молекулярно-кинетической теории запишем в виде:

. Так как (масса газа); а (плотность газа), то или . Откуда .

Расчет в Си: р = 50103 Па; <c> = 450 м/с.

.

Проверим размерность:

.

.

Задача №13.

Энергия поступательного движения молекул азота, находящегося в баллоне объемом V = 20л, 5 кДж, а средняя квадратичная скорость его молекул <c> = 2103 м/с. Найти массу m азота в баллоне и давление р под которым он находится.

Решение:

Энергия поступательного движения молекул азота может быть выражена как , откуда . Известно, что (А). В формуле (А) заменим m. ; .

Расчет в Си: V = 2010-3 м3; W = 5103 Дж; <c> = 2103 м/с.

; .

Задача №14.

Найти среднюю арифметическую <vариф>, среднюю квадратичную <c> и наиболее вероятную vвер скорости молекул газа, который при давлении p = 40 кПа имеет плотность r = 0,3 кг/м3.

Решение:

Для расчета используем формулу (16) (16). Так как и , то (после замены m) получаем ; .

Формулу (19) можно преобразовать (19). Для этого заменим или, зная, что , получим ; . Окончательно имеем . Аналогично в формуле (18) заменим величину .

, .

Расчет в Си: p = 40103 Па; r = 0,3 кг/м3.

; ; .

Задача №15. Средняя квадратичная скорость молекул некоторого газа при нормальных условиях <c> = 461 м/с. Какое число молекул содержит единица массы этого газа?

Решение.

Известно, что массу одной молекулы можно найти (А), где m - масса всех молекул, а n - число молекул. По условию задачи нужно определить, какое число молекул содержит единица массы газа, т.е. величину . Из формулы (А) выразим (В). Согласно формуле (17) . Откуда (С). Массу одной молекулы можно определить иначе (см. формулу (3)). . Заменим m, используя выражение (С).

. Так как , то . Найденное значение m0 подставим в равенство (В). Окончательно получим:

.

Расчет в си:

нормальные условия: ; <c> = 461 м/с; k = 1,310-23 .

.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...