Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классификация,химические формулы,основные представители




В настоящие время известно более 400 видов микотоксинов. Классы плесневых грибков, продуцирующих микотоксины: Aspergillus, Penicillium, Fusarium, Claviceps, Neotyphodium, Myrothecium, Stachybotrys, Trichoderma, Trichothecium.

Основные классы плесневых грибов и продуцируемые ими микотоксины:

Aspergillus: афлатоксины (В1,В2,М1,М2,G1,G2), охратоксины, патулин, циклопиазоновая кислота,стеригматоцистин.

Fusarium: Фумонизины (В1,В2,В3), трихотецены типа А: Т-2,НТ-2, Диацетоксискирпенол (ДАС); трихотецены типа В: Дезоксиниваленол (ДОН), Ниваленол, Фузаренон-Х, Трихотецин; трихотецены типа С: Кротокол, Кротоцин; трихотецены типа D: Веррукарины, Роридины; Зеараленон, Монилиформин, Фузарохроманон, Аурофузарион.

Penicillium: Охратоксины (А, В, С), Цитринин, Рокофортин, Циклопиазоновая кислота, Патулин.

Claviceps: алкалоиды спорыньи-Клавины, Лизергиновая кислота, Амиды лизергиновой кислоты, Эргопептины.

Acremonium: токсины высокой овсяницы-алкалоиды спорыньи, Лолины, Перамины, Лолитремы, Эрговалин.

Грибковые формы можно условно разделить на «полевые» и «амбарные». К полевым формам относятся грибы рода Fusarium, образующиеся в процессе созревания и выращивания культур, амбарные – Penicillium и Aspergillus в процессе хранения. Хотя, в зависимости от определенных факторов (излишняя влажность и температура), в полевых условиях могут расти грибы рода Penicillium и Aspergillus, при хранении могут дальше расти Fusarium.

АФЛАТОКСИНЫ

Афлатоксины представляют собой одну из наиболее опасных групп микотоксинов, обладающих сильными канцерогенными свойствами.

Структура и продуценты афлатоксинов. В настоящее время семейство афлатоксинов включает четыре основных представителя (афлатоксины В1, В2, G1, G2) и еще более 10 соединений, являющихся производными или метаболитами основной группы (М1, М2, В, G2a, GM1, P1, Q1 и другие).

Продуцентами афлатоксинов являются некоторые штаммы 2 видов микроскопических грибов: Aspergillus flavus (Link.) и Aspergillus parasiticus (Speare).

Физико-химические свойства афлатоксинов. Афлатоксины обладают способностью сильно флуоресцировать при воздействии длинноволнового ультрафиолетового излучения. Афлатоксины В1 и В2 обладают сине-голубой флуоресценцией, G1 и G2 — зеленой флуоресценцией, М1 и М2 — сине-фиолетовой. Это свойство лежит в основе практически всех физико-химических методов их обнаружения и количественного определения.

Афлатоксины слаборастворимы в воде (10-20 мкг/мл), нерастворимы в неполярных растворителях, но легко растворяются в растворителях средней полярности, таких как хлороформ, метанол и др. В химически чистом виде они относительно нестабильны и чувствительны к действию воздуха и света, особенно к ультрафиолетовому облучению. Растворы афлатоксинов стабильны в хлороформе и бензоле в течение нескольких лет при хранении в темноте и на холоде.

Следует обратить особое внимание на то, что афлатоксины практически не разрушаются в процессе обычной кулинарной и технологической обработки загрязненных пищевых продуктов.

Факторы, влияющие на токсинообразование. Продуценты афлатоксинов — микроскопические грибы рода Aspergillus могут достаточно хорошо развиваться и образовывать токсины на различных естественных субстратах (продовольственное сырье, пищевые продукты, корма), причем не только в странах с тропическим и субтропическим климатом, как полагали ранее, но практически повсеместно, за исключением, быть может, наиболее холодных районов Северной Европы и Канады.

Оптимальной температурой для образования токсинов является температура 27—30°С, хотя синтез афлатоксинов возможен и при более низкой (12-13°С) или при более высокой (40-42°С) температуре. Например, в условиях производственного хранения зерна максимальное образование афлатоксинов происходит при температуре 35—45°С, что значительно превышает температурный оптимум, установленный в лабораторных условиях.

Другим критическим фактором, определяющим рост микроскопических грибов и синтез афлатоксинов, является влажность субстрата и атмосферного воздуха. Максимальный синтез токсинов наблюдается обычно при влажности выше 18% для субстратов, богатых крахмалом (пшеница, ячмень, рожь, овес, рис, кукуруза, сорго), и выше 9-10% — для субстратов с высоким содержанием липидов (арахис, подсолнечник, семена хлопчатника, различные виды орехов). При относительной влажности атмосферного воздуха ниже 85% синтез афлатоксинов прекращается.

Биологическое действие афлатоксинов. Действие афлатоксинов на организм животных и человека может быть охарактеризовано с двух позиций. Во-первых, с точки зрения острого токсического действия и, во-вторых, с точки зрения оценки опасности отдаленных последствий. Острое токсическое действие афлатоксинов связано с тем, что они являются одними из наиболее сильных гепатропных ядов, органом-мишенью которых является печень. Отдаленные последствия действия афлатоксинов проявляются в виде канцерогенного, мутагенного и тератогенного эффектов.

Механизм действия афлатоксинов. Афлатоксины или их активные метаболиты действуют практически на все компоненты клетки. Афлатоксины нарушают проницаемость плазматических мембран. В ядрах они связываются с ДНК, ингибируют репликацию ДНК, ингибируют активность ДНК-зависимой-РНК-полимеразы — фермента, осуществляющего синтез матричной РНК, и тем самым подавляют процесс транскрипции. В митохондриях афлатоксины вызывают повышение проницаемости мембран, блокируют синтез митохондриальных ДНК и белка, нарушают функционирование системы транспорта электронов, вызывая тем самым энергетический голод клетки. В эндоплазматическом ретикулуме под воздействием афлатоксинов наблюдаются патологические изменения: ингибируется белковый синтез, нарушается регуляция синтеза триглициридов, фосфолипидов и холестерина. Афлатоксины оказывают прямое действие на лизосомы, что приводит к повреждению их мембран и высвобождению активных гидролитических ферментов, которые, в свою очередь, расщепляют клеточные компоненты.

Все вышеперечисленные нарушения приводят к так называемому метаболистическому хаосу и гибели клетки.

Одним из важных доказательств реальной опасности афлатоксинов для здоровья человека явилось установление корреляции между частотой и уровнем загрязнения пищевых продуктов афлатоксинами и частотой первичного рака печени среди населения.

Загрязнение пищевых продуктов афлатоксинами. Как уже отмечалось, продуценты афлатоксинов встречаются повсеместно и этим объясняются значительные масштабы загрязнения кормов и пищевых продуктов и их существенная роль в создании реальной опасности для здоровья человека.

Частота обнаружения и уровень загрязнения афлатоксинами в значительной степени зависят от географических и сезонных факторов, а также от условий выращивания, уборки и хранения сельскохозяйственной продукции.

В природных условиях чаще и в наибольших количествах афлатоксины обнаруживаются в арахисе, кукурузе, семенах хлопчатника. Кроме того, в значительных количествах они могут накапливаться в различных орехах, семенах масличных культур, пшенице, ячмене, зернах какао и кофе.

В кормах, предназначенных для сельскохозяйственных животных, афлатоксины также обнаруживаются достаточно часто и в значительных количествах. Во многих странах с этим связано и обнаружение афлатоксинов в продуктах животного происхождения. Например, в молоке и тканях сельскохозяйственных животных, получавших корма, загрязненные микотоксинами, обнаружен афлатоксин М1. Причем афлатоксин М1 обнаружен как в цельном, так и в сухом молоке, и даже в молочных продуктах, подвергшихся технологической обработке (пастеризация, стерилизация, приготовление творога, йогурта, сыров и т. п.).

Детоксикация загрязненных пищевых продуктов и кормов. Установление высокой токсичности и канцерогенности афлатоксинов и обнаружение их в значительных количествах в основных пищевых продуктах во всем мире привело к необходимости разработки эффективных методов детоксикации сырья, пищевых продуктов и кормов.

В настоящее время с этой целью применяют комплекс мероприятий, которые можно разделить на механические, физические и химические методы детоксикации афлатоксинов. Механические методы детоксикации связаны с отделением загрязненного сырья (материала) вручную или с помощью электронно-колориметрических сортировщиков. Физические методы основаны на достаточно жесткой термической обработке материала (например, автоклавирование), а также связаны с ультрафиолетовым облучением и озонированием. Химический метод предполагает обработку материала сильными окислителями. К сожалению, каждый из названных методов имеет свои существенные недостатки: применение механических и физических методов не дает высокого эффекта, а химические методы приводят к разрушению не только афлатоксинов, но и полезных нутриентов и, кроме этого, нарушают их всасывание.

Согласно данным ВОЗ, человек при благоприятной гигиенической ситуации потребляет с суточным рационом до 0,19 мкг афлатоксинов. В России приняты следующие санитарно-гигиенические нормативы по афлатоксинам: ПДК афлатоксина В1 для всех пищевых продуктов, кроме молока, составляет — 5 мкг/кг, для молока и молочных продуктов — 1 мкг/кг (для афлатоксина М1 — 0,5 мкг/кг). Допустимая суточная доза (ДСД) — 0,005-0,01 мкг/кг массы тела.

ОХРАТОКСИНЫ

Охратоксины — соединения высокой токсичности, с ярко выраженным тератогенным эффектом.

Структура и продуценты охратоксинов. Охратоксины А, В, С представляют собой группу близких по структуре соединений, являющихся изокумаринами, связанными с L-фенилаланином пептидной связью.

Продуцентами охратоксинов являются микроскопические грибы рода Aspergillus и Penicillium. Основными продуцентами являются A. ochraceus и P. viridicatum. Многочисленными исследованиями показано, что природным загрязнителем чаще всего является охратоксин А, в редких случаях охратоксин В.

Физико-химические свойства. Охратоксин А — бесцветное кристаллическое вещество, слабо растворимое в воде, умеренно растворимое в полярных органических растворителях (метанол), а также в водном растворе гидрокарбоната натрия. В химически чистом виде он нестабилен и очень чувствителен к воздействию света и воздуха, однако в растворе этанола может сохраняться без изменений в течение длительного времени. В ультрафиолетовом свете обладает зеленой флуоресценцией. Охратоксин В — кристаллическое вещество, аналог охратоксина А, не содержащий атом хлора. Он примерно в 50 раз менее токсичен, чем охратоксин А. В ультрафиолетом свете обладает голубой флуоресценцией. Охратоксин С — аморфное вещество, этиловый эфир охратоксина А, близок к нему по токсичности, но в качестве природного загрязнителя пищевых продуктов и кормов не обнаружен. В ультрафиолетовом свете обладает бледно-зеленой флуоресценцией.

Биологическое действие. Охратоксины входят в группу микотоксинов, преимущественно поражающих почки. При остром токсикозе, вызванном охратоксинами, патологические изменения выявляются и в печени, и в лимфоидной ткани, и в желудочно-кишечном тракте. В настоящее время уже доказано, что охратоксин А обладает сильным тератогенным действием. Вопрос о канцерогенности охратоксинов для человека остается нерешенным.

Механизм действия охратоксинов. Биохимические, молекулярные, клеточные механизмы действия охратоксинов изучены недостаточно. В исследованиях in vitro показано, что они активно связываются с различными белками: альбуминами сыворотки крови, тромбином, альдолазой, каталазой, аргиназой, карбоксипептидазой А. Некоторые моменты подтверждены и в исследованиях in vivo. Результаты изучения влияния охратоксинов на синтез макромолекул свидетельствуют о том, что охратоксин А ингибирует синтез белка и матричной РНК (токсин действует как конкурентный ингибитор), но не действует на синтез ДНК.

Загрязнение пищевых продуктов. Основными растительными субстратами, в которых обнаруживаются охратоксины, являются зерновые культуры и среди них, в первую очередь, кукуруза, пшеница, ячмень. С сожалением приходится констатировать тот факт, что уровень загрязнения кормового зерна и комбикормов выше среднего во многих странах (Канада, Польша, Югославия, Австрия), в связи с чем охратоксин А был обнаружен в животноводческой продукции (ветчина, бекон, колбасы). С практической точки зрения весьма важно, что охратоксины являются стабильными соединениями. Так, например, при длительном прогревании пшеницы, загрязненной охратоксином А, его содержание снижалось лишь на 32% (при температуре 250—300°С).

Все вышеперечисленное не оставляет сомнения в том, что охратоксины создают реальную опасность для здоровья человека.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...