Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

PS. Примечания – д.м.н. Гусева Л.И.




 

 

Влияние НИЛИ на нервные клетки

Г.Е.Брилль

При любом способе лазерного воздействия на организм непосредственному облучению подвергаются различные элементы иннервационного аппарата органов и тканей - рецепторы, синаптические структуры, нервные проводники или нервные клетки. Изменение функции нервных приборов является элементом комплексной сосудисто-тканевой реакции на лазерное облучение, причем работа нервных клеток и нервных проводников может изменяться при непосредственном фотовоздействии.

Облучение гелий-неоновым лазером покоящихся или спонтанно активных одиночных нейронов подпищеводного ганглия Helix pomatia вызывало неоднозначную реакцию: покоящиеся нейроны не активировались после светового воздействия, в то время как спонтанно активные нейроны, генерирующие импульсы каждые 7-10 мин, при их облучении между спайками, отвечали деполяризацией мембраны и генерацией внеочередного ПД. Деполяризация мембраны появлялась при плотности мощности излучения 0,1 W/cm2 и возрастала с увеличением интенсивности фотовоздействия. Вероятность генерации ПД повышалась с увеличением интенсивности облучения в диапазоне от 1 до 4 W/cm2. Продолжительность латентного периода уменьшалась при увеличении интенсивности фотостимула (Balaban P. et al., 1992).

В электрофизиологических исследованиях, выполненных на нейронах переживающих срезов гиппокампа, с использованием микроэлектродной техники установлено, что облучение светом He-Ne лазера заметно уменьшает или даже предотвращает изменение возбудимости нервных клеток, вызываемое дефицитом кислорода и глюкозы в среде, то есть оказывает протективное действие при ишемических повреждениях мозга (Iwase T. et al., 1996). Также на мозговых срезах показано, что НИЛИ может восстанавливать структуру и функцию нейронов при их незначительных повреждениях, но не оказывает влияния на нормальные клетки со стабильным мембранным потенциалом и на нейроны с грубыми повреждениями (Iwase T. et al., 1988).

Во многих работах демонстрируются возможность предотвращения дегенерации и стимуляция регенерации нервных проводников при облучении светом низкоэнергетического лазера. Это установлено на модели сдавления периферического седалищного нерва (Rochkind S. et al., 1985), а также при исследовании дегенерации волокон зрительного нерва с использованием пероксидазы хрена как показателя полноценности антероградного аксонального тока (Schwartz M. et al., 1987). Отсрочка дегенерации сдавленного зрительного нерва была подтверждена морфологически и электрофизиологически. Положительное влияние на нервные проводники наблюдалось только в том случае, если облучение начиналось в пределах первых двух часов после повреждения (Belkin M. et al., 1987).

В опытах, выполненных более чем на 600 животных, были получены доказательства того, что НИЛИ предотвращает или заметно отодвигает по времени развитие дегенерации поврежденного нерва. Эти результаты были подтверждены в двойном слепом эксперименте на людях (21 пациент) со сдавлением срединного нерва и облучением области компрессии гелий-неоновым лазером (Belkin M., Schwartz M., 1989). При сравнительном анализе влияния НИЛИ различной длины волны на скорость регенерации лицевого нерва крыс установлено, что наиболее эффективным является транскутанное облучение светом гелий-неонового лазера (Anders J.J. et al., 1993). После He-Ne лазерного облучения достоверно ускорялись регенерация и миелинизация волокон поврежденного малоберцового нерва у кроликов (Shi K. et al., 1997).

Известно, что в процессах регенерации нервных проводников важную роль играют шванновские клетки, выполняющие трофическую функцию и продуцирующие ламинин - важный компонент экстраклеточного матрикса, необходимый для разрастания аксонов. Вместе с тем показано, что излучение He-Ne лазера в определенном дозовом интервале может оказывать стимулирующее влияние на пролиферацию шванновских клеток (Van-Breugel H.H., Bar P.R., 1993).

НИЛИ усиливает миграцию нервных клеток и разрастание аксонов в культивируемых клетках мозга эмбриона (Wollman Y. et al., 1996). Показано стимулирующее влияние НИЛИ на разрастание клеточных отростков в культивируемых клетках коры головного мозга взрослых крыс, что может являться аналогом разрастания (sprouting) окончаний аксонов в процессе регенерации периферических нервов (Wollman Y., Rochkind S., 1998).

Низкоинтенсивное лазерное облучение стимулирует процессы регенерации при повреждении денервированной мышцы в том случае, если облучение предшествует повреждению. В основе данного эффекта, по-видимому, лежит активация процессов пролиферации и дифференцировки в клетках мышечной ткани, участвующих в процессах регенерации (Bibikova A., Oron U., 1995).

Показана возможность транскутанной лазерной аналгезии (Walker J.B., Akhanjee L.K., 1985). Обезболивающий эффект лазерного излучения используется в различных клинических ситуациях (Авруцкий М.Я. и др., 1991; Walker J.B., 1983). Если сама возможность получения аналгетического эффекта при облучении низкоинтенсивным лазером не вызывает сомнений, то механизмы этого эффекта исследованы пока явно недостаточно. На анестезированных кроликах изучено влияние НИЛИ на вызванные потенциалы в суральном нерве. Нерв облучался на участке между местом стимуляции и местом регистрации. Получены доказательства, свидетельствующие о том, что при низкоинтенсивном лазерном облучении угнетается проведение импульсов по немиелинизированным А-дельта афферентам периферических чувствительных нервов, участвующих в передаче ноцицептивной информации. Ингибиторный эффект обратим, и проводимость по нерву восстанавливается после прекращения облучения (Kasai S. et al., 1996).

Для уточнения механизма влияния НИЛИ на развитие болевого синдрома изучалось содержание субстанции Р в спинальном заднекорешковом ганглии при электрической стимуляции седалищного нерва (Ohno T., 1997). Установлено, что лазерное облучение предотвращает вызываемое болевой импульсацией повышение содержания субстанции Р в заднекорешковом ганглии. По-видимому, аналгетический эффект облучения связан с угнетением возбудимости немиелинизированных С-волокон в афферентных сенсорных путях.

Есть данные о том, что при акупунктурной лазерной терапии болевых синдромов наблюдается усиление продукции эндогенных опиоидных пептидов типа бета-эндорфина и лей-энкефалина (Шацкая Н.Н. и др., 1992).

До настоящего времени недостаточно изучен вопрос об изменении метаболизма, и в частности, медиаторного обмена в клетках ЦНС при лазерном облучении. Имеются наблюдения, свидетельствующие о повышении эффективности работы дыхательной цепи митохондрий клеток головного мозга при облучении гелий-неоновым лазером, а также о конформационных перестройках ДНК в составе хроматина нейронов, связанных с ослаблением связи ДНК с белком (Зубкова С.М., Соколова З.А., 1978; Зубкова С.М. и др., 1981). НИЛИ оказывает влияние на метаболизм аминокислот и биогенных аминов в различных отделах мозга (Shen Z. et al., 1982). Облучение светом He-Ne лазера вызывает значительное увеличение содержания серотонина в стриатуме и гиппокампе, небольшое, но достоверное снижение уровня норадреналина в коре, при незначительном изменении уровня дофамина (Cassone M.C. et al., 1993). Облучение красным лазером ауэрбаховского сплетения морской свинки увеличивает освобождение ацетилхолина (Vizi E.S. et al., 1977).

Многие факты о влиянии НИЛИ на центральную и периферическую нервную систему суммированы в обзорной работе S.Rochkind и G.E.Ouaknine (1992). Авторы отмечают, что в настоящее время не вызывает сомнения эффективность применения НИЛИ определенной длины волны в лечении заболеваний нервной системы. НИЛИ поддерживает электрофизиологическую активность в поврежденном периферическом нерве крыс, предотвращает образование рубца на месте повреждения, а также дегенеративные изменения в соответствующих нейронах спинного мозга, ускоряя тем самым регенерацию поврежденного нерва. Лазерное облучение спинного мозга собак после тяжелого повреждения спинного мозга и имплантации фрагмента периферического нерва в поврежденную область уменьшает образование глиального рубца, индуцирует разрастание аксонов и ускоряет восстановление локомоторной функции. Применение лазерного облучения при трансплантации ЦНС у млекопитающих показало, что лазерное облучение предотвращает образование грубого глиального рубца между трансплантатом и мозговой тканью хозяина. Приживлению трансплантата после облучения способствует его обильная васкуляризация. Интраоперационное клиническое использование низкоинтенсивной лазеротерапии после оперативной декомпрессии спинного мозга увеличивает функциональную активность спинальных нейронов. Доказано, что прямое лазерное облучение нервной ткани облегчает восстановление электрофизиологической активности в тяжело поврежденном периферическом нерве, предотвращает дегенеративные изменения в нейронах спинного мозга и индуцирует пролиферацию астроцитов и олигодендроцитов. Это способствует поддержанию высокого уровня метаболизма в нейронах и продукции миелина. Сдавление спинного мозга вызывает механическое повреждение мембран нервных клеток, ведущее к метаболическим изменениям в нейронах. Предполагается, что НИЛИ улучшает метаболизм нервных клеток, предотвращает нейрональную дегенерацию, облегчает репарацию и восстановление функции спинного мозга.

Весьма вероятно, что под влиянием НИЛИ стимулируются процессы синтеза трофических субстанций в теле нервной клетки, облегчаются их аксональный транспорт и транссинаптический перенос. Отсюда следует, что одним из механизмов позитивного клинического эффекта лазерной терапии при различных формах патологии является уменьшение нейрогенной дистрофии, составляющей элемент патогенеза любого патологического процесса.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...