Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Нечеткая логика в соединении с ПИД регулированием




 

Для управления дискретными событиями обычно служит многоступенчатая логика, реализованная на программируемых логических контроллерах (ПЛК). Для непрерывного управления применяют релейные (двухпозиционные) или ПИД-регуляторы. Последние работают хорошо, когда управляемый объект находится в устойчивом режиме. В ситуациях же сильных помех, изменения параметров во времени или наличия запаздывания традиционные регуляторы могут не справиться со своей задачей, поскольку исходное для них предположение о линейности объекта уже не действует. В подобных случаях замена (дополнение) ПИД-регуляторов регуляторами на нечеткой логике часто оказывается более удобной, чем использование привычных, но усложненных регуляторов состояния или применение адаптивного подхода.

Это, однако, не единственная область, где находят применение решения, базирующиеся на нечеткой логике. Её основной потенциал в области промышленной автоматизации реализуется в возможностях непосредственного конструирования многосвязных регуляторов. Обычно с регулированием одной переменной вполне справляется релейный или ПИД-регулятор. Однако установки для множества одноконтурных регуляторов приходится задавать вручную. Операторы анализируют условия функционирования объекта и задают установки регулятору в целях его оптимизации. Этот процесс называется диспетчерским управлением и охватывает множество переменных. К сожалению, релейные и ПИД-регуляторы имеют дело лишь с одной переменной, поэтому необходимо множество независимых контуров управления, которые не могут «общаться» друг с другом. В тех случаях, когда необходимо учитывать взаимосвязь физических величин (параметров объекта), приходится строить полную математическую модель (ММ) объекта, позволяющую найти решение.

В промышленной автоматизации этому препятствует длительность разработки ММ, необходимость введения специальных настроечных параметров для последующей оптимизации регулятора из-за существенных упрощений при построении большинства ММ и сложность настройки этих параметров (поскольку оптимизация объекта в одном режиме работы нередко ухудшает её работу в других режимах). Кроме того, большинство специалистов не имеют достаточной подготовки для построения строгой ММ.

В итоге релейный и ПИД-регулятор управляет отдельной переменной объекта, а операторы осуществляют диспетчерское управление.

Нечеткая логика предоставляет высокоэффективное решение этой проблемы. Она позволяет разрабатывать многосвязные регуляторы с диспетчерскими функциями не по ММ, а на основании экспериментальных данных и опыта операторов. Такое решение характерно для случаев, подобных, например, регулированию нескольких температурных зон в печи или управлению дозированием флотационных реагентов.

Промышленное применение нечеткой логики началось в 80 – х годах, прежде всего в Европе и Японии. Когда выяснилось, что достоинства нечеткой логики можно использовать в полной мере лишь в сочетании с традиционными способами регулирования, начался выпуск продуктов, интегрирующих технологии нечеткой логики в аппаратуру и программное обеспечение промышленной автоматизации.

В 1990 г. японская фирма Omron разработала микропроцессор на нечеткой логике и реализовала его в виде сопроцессорного модуля для своих ПЛК. В 1992 г. корпорация Klockner-Moeller (Австрия) разработала специализированный «нечеткий ПЛК», сочетающий нечеткую логику и обычные методы автоматизации как в самом ПЛК, так и в соответствующем программном обеспечении. В 1994 г. компании Allen-Breadley (США) и Siemens (Германия) разработали полностью программные реализации ПЛК в виде функциональных блоков.

В 1997 г. Международная электротехническая комиссия разработала стандарт нечеткой логики CD IEC 1131-7 с целью объединить её с существующим стандартом IEC 1131 для ПЛК. Производители следуют этому направлению и широко интегрируют компоненты на нечеткой логике в АСУТП. Таким образом, разработчики большинства промышленных систем управления сегодня вполне обеспечены средствами нечеткой логики.

В качестве примера успешного применения контроллера на нечеткой логике можно привести систему стабилизации температуры горения на мусоросжигательных заводах в Мангейме. При использовании стандартных регуляторов производительность паровых котлов колебалась в пределах ±35 % от номинальной. Внедрение контроллера на нечеткой логике позволило на порядок уменьшить эту величину. В результате существенно повысилась управляемость процесса и снизились вредные выбросы в атмосферу, в частности, оксида углерода в 2 раза.

Еще один пример практического применения НЛ – очистка стоков. Процесс включает в себя комбинацию биологических, химических и механических факторов и практически не поддается математическому моделированию. Однако имеется большой опыт операторов, который можно реализовать с использованием нечеткой логики.

Основной переменной, характеризующей качество процесса, является содержание ионов тяжелых металлов в стоках на выходе из аппарата очистки. Существующие средства измерения концентраций ионов тяжелых металлов сложны и дороги в эксплуатации, не обеспечивают необходимые для управления процессом точность и частоту измерения. Кроме того, малые изменения входных переменных процесса могут резко изменить показатели выходных переменных. Поэтому следует определить некий показатель, характеризующий качество очистки стоков, либо содержание ионов тяжелых металлов в них.

Как показали экспериментальные исследования, переменными, определяющими качество протекания процесса очистки, являются значения водородного показателя рН и окислительно-восстановительного потенциала стоков еН, измеряемые на входе и выходе из аппарата очистки. Однако каждая измеряемая переменная рН и еН в отдельности не дает четкой и достоверной информации о содержании ионов тяжелых металлов в стоках. Поэтому появилась необходимость синтезировать на основе этих двух величин косвенный показатель качества очистки промышленных стоков, используемый в роли индикатора при управлении процессом. Исследования позволили выявить как косвенный показатель величину произведения рН и еН [4].

Используя аппарат НЛ, был составлен алгоритм управления процессом очистки стоков.

Структуру схемы управления можно представить следующим образом. Измеряемые на выходе из аппарата очистки величины рН и еН поступают на вход контроллера на нечеткой логике в блок вычисления косвенного показателя Y. Контроллер, используя 207 правил, рассчитывает и задает уставки стандартному ПИД-регулятору расхода стоков, поступающих на очистку. Этот ПИД регулятор является функциональным блоком нечеткого ПЛК. Проект был реализован в течение 3 месяцев и окупился за полгода.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...