Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Потенциальная температура. Влажноадиабатический градиент.




Происхождение атмосферы. Атмосфера, как компонент географической оболочки.

Первичная гелиево-водородная атмосфера была утеряна Землей при разогреве. Некоторое время Землю обволакивал мощный слой из водяного пара и газов малопроницаемых для солнечных лучей. Вулканические процессы обогатили атмосферу углекислым газом. В конце PZ состав атмосферы в целом уже мало отличался от современного: она стала азотно-кислородной. Состав современной атмосферы как и в ранние геологические эпохи регулируется организмами.

Дифференциация вещества – характернейшая черта эволюции Земли. Выражением ее служит оболочечное строение Земли.Атмосфера составляет структурную часть географической оболочки, а её вещество – её компоненты.

• Воздействие земной коры на атмосферу. посредством морфологии (рельефа) земной поверхности. вулканизм. тепловое воздействие. нарушение термики океанических вод, вызванное землетрясениями. эоловое (пылевое) загрязнение атмосферы

• Воздействие гидросферы на атмосферу. поставщик паров воды. теплообмен

• Воздействие атмосферы на другие части географической оболочки. проникновение посредствам участия в фотосинтезе кислорода атмосферного воздуха. проникновение воздуха в глубокие недра земной коры. растворение газов в воде мирового океана. процесс выветривания горных пород. образование течений, волн (под действием ветров)

 

Температура воздуха.

Температура - физическая величина, характеризующая состояние термодинамического равновесия системы. Более высокой температурой обладают те тела, у которых средняя кинетическая энергия молекул (атомов) выше.

Кроме того, в разных местах Земли в одно и то же время она также различна. Температура в метеорологии в большинстве стран измеряется в единицах СИ, т. е, в градусах Цельсия (°С)., или шкала Кельвина. В некоторых странах используется температурная шкала Фаренгейта. Распределение температуры воздуха в атмосфере и непрерывные изменения этого распределения называют тепловым режимом атмосферы. Теплообмен осуществляется, радиационным путем, путем испарения и последующей конденсации или кристаллизации водяного пара. Изменения температуры воздуха могут происходить независимо от теплообмена, адиабатически. (изменениями атмосферного давления), теплопроводности, а затем - турбулентности. Для высоких слоев атмосферы теплообмен с земной поверхностью имеет меньшее значение. Изменения температуры, связанные с адвекцией— с притоком в данное место новых воздушных масс из других частей земного шара, называют адвентивными. о притекает воздух с более высокой температурой, говорят об адвекции тепла;

 

З. Суточный и годовой ход температур.

1. поверхности почвы.

Минимум через полчаса после восхода солнца. К этому времени радиационный баланс поверхности почвы становится равным нулю — отдача тепла из верхнего слоя почвы эффективным излучением уравновешивается возросшим притоком суммарной радиации

в13—14 ч достигает максимума в суточном ходе. Отдача тепла в дневные часы из верхнего слоя почвы в атмосферу происходит путем эффективного излучения, и путем увеличившегося испарения воды. Продолжается и передача тепла в глубь почвы. Максимальные температуры на поверхности почвы обычно выше, чем в воздухе т.к. днем солнечная радиация прежде всего нагревает почву, а уже от нее нагревается воздух. Ночью температура почвы ниже, чем в воздухе, так как прежде всего почва выхолаживается эффективным излучением, а уже от нее охлаждается воздух. Суточная амплитуда температуры. Температура поверхности почвы, конечно, меняется ив годовом ходе. В тропических широтах ее годовая амплитуда (разность многолетних средних температур самого теплого и самого холодного месяцев года) небольшая и растет с широтой.

2. Поверхности водоемов

3. Нагревание и охлаждение распространяются в водоемах на более толстый и обладающий большей теплоемкостью слой, чем в почве. Вследствие этого изменения температуры на поверхности воды незначительны. Годовая амплитуда колебаний температуры на поверхности океана значительно больше, чем суточная, но она меньше, чем годовая амплитуда на поверхности почвы. В тропиках она порядка 2—3°С, под 40° с.ш. около 10°С.

На внутренних морях и значительно большие годовые амплитуды —до 20°С и более. Как суточные, так, и годовые колебания распространяются в воде (также с запозданием) до больших глубин, чем в почве.

Земной поверхности

Температура воздуха меняется в суточном ходе вслед за температурой земной поверхности, отставая на некоторое время Суточный ход температуры воздуха достаточно правильно проявляется лишь в условиях устойчивой ясной погоды. Это зависит от изменений облачности, меняющих радиационные условия на земной поверхности, а также адвекции, т.е. от притока воздушных масс с другой температурой.

Суточная амплитуда температуры воздуха меняется также по сезонам, по широте, а также в зависимости от характера почвы и рельефа местности. Зимой она меньше, чем летом, так же как и амплитуда температуры подстилающей поверхности. Понятно, что малые суточные амплитуды температуры поверхности моря определяют и малые суточные амплитуды температуры воздуха над морем. Суточные амплитуды температуры поверхности открытого океана измеряются десятыми долями градуса.

 

Непериодические изменения температуры воздуха. Адиабатические изменения температуры сухого воздуха. Вертикальный температурный градиент.

Адиабатическим называется процесс, протекающий без теплообмена с окружающей средой, — в нашем случае с окружающей атмосферой. Увеличение давления при адиабатическом процессе ведет к увеличению температуры, уменьшение – к падению температуры.

В теплом воздухе давление падает с высотой медленнее, чем в холодном. Поэтому на высотах давление в теплом и холодном воздухе уже становится неодинаковым. Иными словами, теплые области в атмосфере являются в высоких слоях областями высокого давления, а холодные области — областями низкого давления. Температура в вертикальном атмосферном столбе может распределяться по высоте самым различным образом, отражая тепловое влияние самых разнообразных процессов, происходящих во всей толще атмосферы. Фактическое распределение температуры с высотой не подчинено никакой простой закономерности,

вертикальный градиент температуры - изменение температуры в атмосфере на единицу высоты. В реальной атмосфере вертикальный градиент температуры может меняться в широких пределах. В средних широтах он равен 0,65°С/100 м, Достаточно часто наблюдаются случаи, когда температура воздуха в некотором слое атмосферы с высотой не падает, а растет – инверсия.

 

Потенциальная температура. Влажноадиабатический градиент.

то температура, которую получил бы воздух, если его адиабатически опустить (поднять) до давления 1000 гПа.

Ее можно определить с достаточной точностью, т.к. известно, что на каждые 100 м спуска температура должна возрастать на один градус.

Вычисляя потенциальную температуру воздушных масс, находящихся на разных высотах, можно сравнивать их тепловое состояние.

По самому смыслу потенциальной температуры ясно, что

при изменении состояния воздуха по сухоадиабатическому закону потенциальная температура индивидуального объема воздуха остается неизменной.

Изменение потенциальной температуры воздушной массы показывает, что процесс перестал быть сухоадиабатическим. Действительно, когда начинается конденсация и выделяется теплота конденсации, потенциальная температура возрастает.

 

Влажноадилбатнчгские изменения температуры

Падение температуры в насыщенном воздухе при подъеме его на единицу высоты (100 м) называют влажноадиабатическим градиентом.

Между адиабатическим подъемом сухого и влажного ненасыщенного воздуха имеется принципиальное различие. Адиабатический подъем сухого воздуха ведет только к падению температуры в нем. Если же поднимается влажный ненасыщенный воздух, то вместе с адиабатическим понижением температуры содержащийся в воздухе водяной пар постепенно приближается к состоянию насыщения. Наконец, на какой-то высоте температура понизится настолько, что водяной пар достигнет насыщения.

При дальнейшем подъеме влажный насыщенный воздух охлаждается иначе, чем ненасыщенный, т. е. уже не по сухоадиабатическому закону. В нем происходит конденсация избыточного количества водяного пара, вследствие чего выделяется теплота конденсации. Выделение этой теплоты идет на совершение части работы расширения поднимающегося воздуха. Тем самым оно замедляет понижение температуры при подъеме. Она падает тем медленнее, чем больше влагосодержание воздуха в состоянии насыщения.

В сухом и ненасыщенном влажном воздухе при сухоадиабатическом процессе изменение температуры на единицу изменения высоты — величина постоянная (прямолинейная зависимость). Однако при влажноадиабатическом процессе изменение температуры на каждую единицу высоты — величина переменная. И линии изменения температуры в осях координат температура — высота — кривые, а не прямые. По мере увеличения высоты насыщающие количества водяного пара становятся все меньше и меньше, влажноадиабатический градиент приближается к сухо-адиабатическому градиенту, поэтому наклон влажных адиабат приближается к наклону сухих адиабат. По этой причине на графике влажные адиабаты обращены выпуклостью вверх.

При очень низких температурах, которые имеет воздух, поднимающийся в высоких слоях атмосферы, водяного пара в нем остается мало и выделение теплоты конденсации поэтому тоже незначительное. Падение температуры при адиабатическом подъеме в таком воздухе приближается к падению в сухом воздухе. Иначе говоря, влажноадиабатический градиент при низких температурах приближается по величине к сухоадиабатическому градиенту.

При опускании насыщенного воздуха процесс изменения температуры происходит по-разному в зависимости от того, остались ли в воздухе продукты конденсации (капли и кристаллы) или они уже целиком выпали из воздуха в виде осадков.

Если в воздухе нет продуктов конденсации, то как только он начнет опускаться и начнет расти температура, воздух становится ненасыщенным. Следовательно, изменение температуры пойдет по сухоадиабатическому закону, т. е. воздух, опускаясь, будет нагреваться на 1°С/100 м.

Если в воздухе сохранились продукты конденсации (капельки и кристаллы), образовавшиеся при подъеме, то при опускании и нагревании воздуха они будут постепенно испаряться. При этом часть внутренней энергии опускающегося воздуха затрачивается на испарение капелек и кристаллов, т. е. часть тепла воздушной массы переходит в скрытую теплоту парообразования, поэтому температура повышается меньше, чем при сухоадиабатическом опускании.

 

Инверсии температуры.

Падение температуры с высотой можно считать нормальным явлением для тропосферы, а инверсии температуры — отклонениями от нормального состояния. Правда, инверсии температуры в тропосфере — почти повседневное явление.

Инверсию температуры можно характеризовать высотой нижней границы, т. е. высотой, с которой начинается повышение температуры, толщиной слоя, в котором наблюдается повышение температуры с высотой, и разностью температур на верхней и нижней границах инверсионного слоя — скачком температуры.

По высоте все тропосферные инверсии можно разделить на инверсии приземные и инверсии в свободной атмосфере.

Приземная инверсия начинается от самой подстилающей поверхности. Над открытой водой такие инверсии наблюдаются редко. У подстилающей поверхности температура самая низкая, с высотой она растет, причем этот рост может распространяться на слой в несколько десятков и даже сотен метров. Затем инверсия сменяется нормальным падением температуры с высотой.

Инверсия в свободной атмосфере наблюдается в некотором слое воздуха, лежащем на той или иной высоте над земной поверхностью, основание инверсии может находиться на любом уровне в тропосфере, однако наиболее часты инверсии в пределах нижних 2 км. Толщина инверсионного слоя также может быть самой различной — от немногих десятков до многих сотен метров. Наконец, скачок температуры на инверсии, т. е. разность температур на верхней и нижней границах инверсионного слоя, может колебаться от 1°С и меньше до 10—15° С и больше.

Слишком сильная турбулентность неблагоприятна для образования и сохранения инверсии, так как охлажденный воздух будет ею быстро рассеиваться.

Приземные инверсии

Для образования приземных инверсий особенно благоприятны ясные ночи со слабым ветром. Такие условия погоды характерны для антициклонов и весной и осенью могут привести к ночным заморозкам. Явление заморозков, как правило, связано с образованием приземной инверсии.. С приземными инверсиями связаны также так называемые поземные

С восходом Солнца приземная инверсия радиационного типа разрушается, так как ночное охлаждение почвы сменяется прогреванием.

Рельеф местности может усиливать инверсию. Так, охлаждение воздуха в ясную погоду особенно велико в котловинах, откуда выхоложенный воздух не находит выхода.

Весной теплый воздух, текущий над снежным покровом, охлаждается, потому что тепло идет на таяние снега. Над поверхностью тающего снежного покрова возникает так называемая снежная или весенняя инверсия. Если ветер достаточно сильный, то вследствие турбулентности эта инверсия обнаруживается не у самой земной поверхности, а на некоторой высоте.

Над полярными льдами приземные инверсии часты и летом. В это время они связаны с охлаждением воздуха над тающим льдом. Вместо инверсии может наблюдаться также состояние, близкое к изотермическому, т. е. с вертикальными градиентами температуры, близкими к нулю.

Приподнятые инверсии

Приподнятые инверсии, т. е. инверсионные слои в свободной атмосфере, возникают преимущественно в устойчивых антициклонах как над сушей, так и над морем, и наблюдаются над большими территориями на протяжении длительных периодов.

Большинство инверсий в свободной атмосфере являются инверсиями оседания. Они возникают вследствие нисходящего движения воздуха и его адиабатического нагревания. Инверсии оседания образуются именно в устойчивых воздушных массах антициклонов, где воздух обладает нисходящими составляющими движения. При этом решающее значение имеет наличие максимума оседания в свободной атмосфере. Опускаясь вниз, оседая вследствие горизонтального растекания, атмосферный слой в то же самое время сжимается вследствие повышения давления

Инверсии оседания покрывают обширные территории в соответствии с размерами антициклонов, в которых они возникают Особенно велики инверсии оседания в зимних устойчивых антициклонах над материками умеренных широт. Почти постоянно инверсии или изотермии наблюдаются в нижних двух километрах в зоне пассатов на обращенной к экватору периферии субтропических антициклонов (см. гл. седьмую, параграф 12).

Кроме инверсий оседания в тропосфере наблюдаются

фронтальные инверсии. Фронты, разделяющие теплую и холодную воздушные массы, в тропосфере становятся узкими фронтальными зонами перехода от холодной к теплой воздушной массе. При этом клин холодного воздуха лежит под теплой воздушной массой.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...