Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Номинальная мощность и кпд синхронного генератора




 

Энергетический баланс синхронного генератора можно пояснить с помощью его векторной диаграммы (рис. 15.4, б). Вектор Ėо и его составляющие проектируем на направление вектора тока i; тогда активная составляющая ЭДС

Это уравнение умножим на действующее значение тока I и таким путем преобразуем (15.5) в уравнение электрической мощности для одной фазы генератора:

Оно показывает, что электрическая мощность статора Рэс складывается из мощности потерь в проводах якоря Рпр и электрической мощности Р, с которой генератор отдает энергию в сеть. Но помимо мощности потерь в проводах в генераторе имеют место еще и мощность механических потерь Рмп и мощность потерь на гистерезис и вихревые токи в электротехнической стали Рс статора и полюсных башмаков. Из уравнения (15.6) видно, что мощность этих потерь покрывается не за счет электрической мощности, а непосредственно за счет механической мощности первичного двигателя. Соответствующая энергетическая диаграмма синхронного генератора показана на рис. 15.5. Кроме того, в синхронном гене­раторе имеют место потери энергии на возбуждение. Мощность потерь на возбуждение генератора равна мощности возбудителя постоянного тока Рвоз. Мощность возбудителя составляет примерно 0,3—1 % номинальной мощности для больших генераторов. Мощность всех потерь энер­гии в генераторе делится на мощность постоянных потерь, почти не зависящую от нагрузки, и мощность переменных потерь, изменяющуюся в зависимости от нагрузки. Мощность постоянных потерь Рпос равна сумме мощностей потерь механических, возбуждения и в электротехнической стали; мощность переменных потерь Рпер равна мощности потерь в проводах.

Электрическая мощность генератора, выраженная через фазные напряжения и ток, Р = 3UI cos φ, при одном и том же токе зависит от cos φ нагрузки. Но сечения проводников обмоток генератора рассчитываются на определенное значение тока, а его изоляция и сечение магнитной цепи — на определенное напряжение U; следовательно, эти величины выбираются независимо от cos φ нагрузки. По этой причине подобно трансформаторам номинальной мощностью генератора считается его полная мощность S = UI, измеряемая в киловольт-амперах. Было бы нецелесообразно соединять генератор с турбиной, рассчитанной на его полную мощность S (деленную на его КПД), так как почти всегда cos φ < 1. Поэтому турбина к генератору обычно имеет несколько меньшую мощность, чем полная мощность генератора (например, из расчета cos φ = 0,8).

Мощность генератора пропорциональна его объему, поэтому с увеличением номинальной мощности генератора уменьшается поверхность охлаждения, приходящаяся на единицу мощности, вследствие чего приходится создавать усиленное охлаждение искусственным путем посредством вентиляции машины. В крупных турбогенераторах количество воздуха, необходимого для вентиляции, весьма велико. В час для охлаждения машины требуется примерно столько воздуха, сколько весит сама машина.

Для генераторов мощностью более 25 000 кВ-А обычно применяется водородное охлаждение. Преимущества такого охлаждения определяются тем, что водород легче воздуха в 14 раз, его теплоемкость больше в 14 раз, теплопроводность — в 7 раз, а коэффициент теплоотдачи водородом с охлаждаемой поверхности — в 1,35 раза.

Коэффициент полезного действия генератора равен отношению мощности генератора, включенного в сеть, к мощности первичного двигателя; последнюю удобно представить как сумму мощности генератора и мощности всех видов потерь в машине; следовательно,

Уравнение КПД показывает, что с уменьшением нагрузки КПД также уменьшается. На рис. 15.6 приведены графики зависимости КПД генератора от нагрузки при различных значениях cos φ. С увеличением номинальной мощности генераторов возрастают КПД как самого генератора, так и его первичного двигателя.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...