Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Физиология и биохимия растительной клетки




Физиология раст

Тема:1

Предмет задачи и методы физиологии ратении

Физиология растений — наука, которая изучает процессы жизнедеятельности и функции растительного организма. Слово «физиология» греческого происхождения; оно состоит из двух слов: physis — природа и logos — понятие, учение. Физиология растений является наиболее развитой отраслью экспериментальной ботаники, которая в XIX в. выделилась в самостоятельную науку. Она тесно связана с химией, физикой, биохимией, биофизикой, микробиологией, молекулярной биологией.

Перед научными работниками, физиологами растений поставлены такие задачи: изучить обмен веществ и энергии в растительном организме, фотосинтез, хемосинтез, биологическую фиксацию азота из атмосферы и корневое питание растений; разработать методы повышения использования растми солнечной энергии и питательных веществ почвы, обогащения почвы азотом; создать новые, более эффективные формы удобрений и разработать методы их применения; исследовать действие биологически активных веществ с целью использования их в растениеводстве; разработать методы более продуктивного использования воды растением. Без решения этих вопросов невозможно решение и ряда других проблем земледелия и растениеводства, направленных на повышение урожайности.

Интенсивное применение минеральных удобрений, гербицидов, физиологически активных веществ, химических препаратов для защиты растений от болезней и вредителей требует глубокого и всестороннего изучения их влияния на рост и обмен веществ растительных организмов с целью значительного повышения продуктивности сельскохозяйственных растений.

Решение поставленных задач имеет большое значение для разработки проблем ускорения научно-технического прогресса в растениеводстве и дальнейшего развития сельского хозяйства нашей страны.

Основной метод познания процессов, явлений в физиологии — эксперимент, опыт. Следовательно, физиология растений — наука экспериментальная.

Для изучений физико-химической сути функций, процессов в физиологии растений широко применяют методы: лабораторно-аналитический, вегетационный, полевой, меченых атомов, электронной микроскопии, электрофореза, хроматографического анализа, ультрафиолетовой и люминесцентной микроскопии, спектрофотометрии и др. Кроме того, используют фитотроны и лаборатории искусственного климата, в которых выращивают раст и проводят опыты в условиях определенного состава воздуха, нужной температуры и освещения. Применяя эти методы, физиологи исследуют раст на молекулярном, субклеточном, клеточном и организменном (интактное растение) уровнях.

История возникновения Фиология раст

Физиология растений — одна из молодых отраслей биологии. Возникновение ее можно отнести к концу XVIII — началу XIX в. Ф. р. развивалась первоначально как составная часть ботаники, занимающаяся преимущественно проблемой почвенного питания растений. Голландский естествоиспытатель Ян ван Гельмонт (1629) экспериментально решал вопрос о том, за счёт чего строят свои ткани раст и пришёл к ошибочному с современной точки зрения заключению, что основной источник питания раст не почва, а вода. Его опыты имели большое значение для изучения растений, т.к. он впервые применилколичественный метод – взвешивание.

В конце 17 в. было установлено наличие у растений пола.

В 1727 англичанин С. Гейлс обнаружил передвижение веществ и воды по тканям раст. Впервые идею о воздушном питании растений высказал в 1753 М. В. Ломоносов, который отметил, что деревья, растущие на бедном питательном веществами песке, не могут получить через корни необходимого количества питательных веществ, и сделал вывод, что раст получают питание через листья из воздуха.

Важнейшую роль в последующем развитии Ф. р. и всего естествознания в целом сыграло открытие англ. химика ДжозефаПристли, который установил, что зелёные раст в ходе своей жизнедеятельности изменяют состав воздуха, возвращают ему способность поддерживать горение и сохранять жизнь животных (1771). Это явление получило в дальнейшем названиефотосинтеза.

В это время начали складываться представления о фотосинтезе как процессе усвоения солнечной энергии зеленым растением, нашедшие более или менее законченное выражение в труде швейцских учёных Ж. Сенебье и Н. Т. Соссюра (конца 18 – начала 19 вв.), голландского естествоиспытателя Я. Ингенхауза (1779). Пятитомная «Физиология растений» Сенебье, появившаяся в 90-х годах XVIII в., была попыткой охватить, весь известный тогда материал наблюдений и опытов как содержание единой научной дисциплины. Позднее немецкий учёный Ю. Р. Майер, французский агрохимик Ж. Б. Буссенго (1868) и др. расшифровали отдельные стороны фотосинтеза, как процесса усвоения углекислого газа и воды, происходящего с выделением кислорода при обязательном участии света, показали зависимость фотосинтеза от света и установили связь между поглощением углекислоты и выделением кислорода у растений в процессе дыхания.

Тема:2

физиология и биохимия растительной клетки

1-Структурно-функциональная организация эукариот.клетки Мембранная система. Эта система представлена клеточной плазматической (цитоплазматической) мембраной, цитоплазматической (эндоплазматической) сетью (рети-кулом) и пластинчатым комплексом Гольджи. Плазматическая (цитоплаз-матическая) мембрана имеет толщину 8-12 нм и состоит из трех слоев, два из которых являются белковыми слоями толщиной по 3 нм каждый, а третий (внутренний) — двойным фосфолипидным слоем толщиной 6 нм (рис. 47). Плазматическая мембрана является полупроницаемой структурой. Через нее в клетку входят питательные вещества и выходят все «отходы» (продукты секреции). Она создает барьер проницаемости. Цитоплазматическая (эндоплазматическая) сеть (рети-кулум) представлена пронизывающими однослойными мембранными полостями (трубочками, цистернами, вакуолями) разных размеров, заполненными белковыми гранулами В составе цитоплазмы обнаруживают ферменты, полисахариды, АТФ, тРНК, ионы Са, Na, К и других химических элементов. Основная функция цитоплазматиче-ского матрикса заключается в том, что он является внутренней средой клетки, поддерживающей мембранные системы, орга-неллы и включения. В нем осуществляются гликолиз, активация аминокислот и другие реакцииКлеточные органеллы. Эти структуры представлены ядром, хромосомами, ядрышком, центриолями, митохондриями, рибо-сомами, лизосомами. Они характерны за некоторыми исключениями как для клеток животных, так и для клеток растений. Ядро в клетке имеет форму и размеры, зависящие от формы, размеров и функций клетки. В клетках эукариотических организмов содержится, как правило, по одному ядру, реже по два и более

Хромосомы. Хромосомы располагаются в ядре. Их название введено в литературу В. Вальдейлом в 1883 г. Они имеют форму палочек, нитей, петель. Для каждой хромосомы характерны индивидуальные особенности, касающиеся длины и положения перетяжки (центромеры) по длине хромосомы. Каждая из митотичес-ких индивидуальных хромосом состоит из двух сестринских хроматид, удерживаемых центромерой. В зависимости от локализации центромер различают метацентрические, субметацентричес-кие, акроцентрические и телоцентрические хромосомы (рис. 51). Количество хромосом постоянно в ядрах соматических клеток, где они находятся в парах. Диплоидный набор хромосом называют кариотипом (от греч. caryon — ядро, type — форма, тип). Для разных организмов характерны разные по количеству диплоидные наборы хромосом. В зависимости от строения хромосомы человека классифицируют на группы. Ядрышко — это очень мелкая структура диаметром 1—5 мкм, которая локализуется в ядре. Количество ядрышек бывает разным — от одного до нескольких. Центральная часть в ядрышке представлена фибриллярной частью (цепи, ДНК- ядрышковые организаторы и рибонуклеопротеиды) и гранулярной (формирующиеся субъединицы рибосом). Ядрышко является местом синтеза рРНК. Матрицей для синтеза рРНК является ДНК ядрышкового организатора Центриоли представляют собой гранулярные цилиндры диаметром около 0,15 мкм и длиной 0,5 мкм, локализующиеся парами в клетке около ядра. Эти пары называют диплосомами (центросома-ми). Митохондрии присутствуют во всех клетках организмов, которые используют для дыхания кислород. В одной клетке может находиться 50-5000 митохондрий. Они имеют форму палочек, нитей или гранул (рис. 54), а их размеры достигают 7 мкм.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...