Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Видео 1. Измерение расстояний при помощи поперечного масштаба.




 

Различают масштабы крупные и мелкие. Чем меньше знаменатель численного масштаба, тем крупнее масштаб. Даже при идеальном зрении человек не может совместить точку с точкой или штрих с точкой с точностью выше чем 0,1 мм при расстоянии от глаза до бумаги около 25 см, и невозможно определить длину линии на плане точнее, чем 0,1 мм. Поэтому точностью масштаба называется длина горизонтального проложения линии на местности, соответствующей 0,1 мм на плане; т.е. точность масштаба – это точность, с которой можно по карте определить длину линии на местности.

 

  Рис. 6. Линейный и поперечный масштабы.

 

Картой называют уменьшенное, построенное в картографической проекции, обобщённое изображение поверхности Земли.

 

Для построения карты точки и линии местности проецируют нормалями на поверхность эллипсоида, а затем эту поверхность по определённым законам отображают на плоскость. В отличие от плана, на карте в разных её участках отношение длины отрезка на карте к соответствующему горизонтальному проложению не постоянно: на карте масштаб обобщённый, он может меняться при переходе от участка к участку или при переходе от направления к направлению.

Геодезическим материалом является и профиль местности.

 

Профиль местности – это проекция следа сечения местности вертикальной плоскостью по оси сооружения, т.е. уменьшенное изображение вертикального разреза.

 

Разрез местности, как правило, представляет собой кривую линию, но на профиле её изображают в виде ломаной, где поворотные точки ломаной – характерные точки местности. Для наглядности вертикальные отрезки обычно изображают в более крупном масштабе, чем горизонтальные (как правило, вертикальный масштаб берут в десять раз крупнее горизонтального).

К топографическим материалам предъявляют ряд требований, главными из которых являются точность, наглядность и достоверность. Под точностью понимают соответствие местоположения, очертаний и размеров объектов на планах и картах действительности. Точность передачи количественных характеристик изображённых объектов зависит от масштаба. Зрительное восприятие образа земной поверхности, её характерных черт и особенностей связано с наглядностью планов и карт. Наглядность обусловливается выделением типичных черт местности, определяющих её отличительные особенности, путём обобщений – генерализации, а также применением для изображения земной поверхности топографических условных знаков.

Карты и планы должны быть достоверными, т.е. сведения, составляющие их содержание на определённую дату, должны быть правильными, отвечающими состоянию изображённых на них объектов. Важным элементом достоверности является полнота содержания, включающая необходимый объём сведений и их разносторонность.

По назначению карты и плана делятся на основные и специализированные. К основным относятся карты и планы общегосударственного картографирования. Эти материалы многоцелевого назначения, поэтому на них отображают все элементы ситуации и рельефа. Специализированные карты и планы создают для решения конкретных задач отдельной отрасли.

 

2.2 Изображение ситуации

 

На картах и планах изображаются различные объекты местности – контуры угодий, постройки, линии дорог, связи и т.д. Совокупность таких объектов называют ситуацией. Эти объекты на картах и планах изображают условными знаками. Если знак с учётом масштаба передаёт реальные размеры объекта, то его называют контурным (площадным, масштабным). К таковым относятся леса, поля, населенные пункты. Внутри охваченной пунктиром территории ставятся условные знаки; они не ставятся только в случае пашни (иногда внутри контура всё-таки ставится буква «п»). С уменьшением масштаба теряется детальность изображения. В этом случае невозможно отобразить объект в реальном масштабе, поэтому используют внемасштабные условные знаки. Так, например, при необходимости изобразить ключ на карте масштаба 1:2000 используется знак диаметром полтора миллиметра, что соответствовало бы в натуре диаметру ключа в более чем два метра (при реальных размерах порядка нескольких сантиметров диаметр знака в масштабе получился бы менее 0,1 мм). При необходимости изобразить такие объекты, у которых в масштабе может быть отображён только один линейный размер (длина дороги, трубопровода, линии электропередач), используют линейные знаки, занимающее, т.о., «промежуточное» положение между площадными и внемасштабными знаками. При необходимости дать характеристику объекта (или указать его название) используют пояснительные знаки, которые представляют собой подписи, позволяющие определить, например, глубину реки, грузоподъёмность моста, породу леса. Специальные условные знаки устанавливают соответствующие ведомства.

 

 

2.3 Рельеф на картах и планах

 

Совокупность неровностей земной поверхности называют рельефом. На топографических планах и картах рельеф изображают горизонталями.

 

Горизонталь – это линия, соединяющая точки земной поверхности с одинаковыми высотами.

 

Понятие о горизонтали можно получить, если представить себе местность, затопленную до данной высоты. Береговая линия в этом случае будет горизонталью. Т.о., горизонталь – это след сечения местности уровенной поверхностью. Как правило, выделяют следующие основные формы рельефа (рис. 7). Гора (если высота менее 200 м, то – холм) – это возвышающаяся над окружающей местностью часть земной поверхности. Наивысшая точка горы – вершина, низ – подошва, боковые поверхности – скаты. Для указания направления ската применяют бергштрихи (скатштрихи). Котловина, впадина – замкнутое углубление поверхности. Наиболее низкая часть впадины – дно, линия слияния с окружающей местностью – бровка. Хребет – вытянутая в одном направлении возвышенность со скатами в двух противоположных направлениях. Линия встречи скатов называется водоразделом. Лощина – вытянутое в одном направлении понижение с двумя скатами. Линия встречи скатов называется водосливом. Седловина – понижение между двумя возвышенностями. Наиболее низкую точку между возвышенностями называют перевалом.

 

Рис. 7. Основные формы рельефа.

 

На планах и картах высоты горизонталей изменяются через равные промежутки.

 

Разность высот двух соседних горизонталей называют высотой сечения рельефа, а расстояние между горизонталями по какому-либо направлению на плане – заложением.

 

Высоту сечения рельефа выбирают в зависимости от масштаба карты и характера местности.

О крутизне ската можно судить по величине заложений на карте. Чем меньше заложение, тем круче скат. Для характеристики крутизны ската используют угол наклона ν между линией, соединяющей данные точки и уровенной поверхностью. Чем больше угол наклона, тем круче скат. Другой характеристикой крутизны служит уклон. Уклоном линии местности называют отношение превышения к горизонтальному проложению: i = h/d = tg ν. Уклон – безразмерная величина, его выражают в процентах или в промилле.

 

 

2.4 Задачи, решаемые на картах и планах при проектировании сооружений

 

При составлении плана землепользования, при проектировании участков, при подготовке вынесения проектов в натуру возникает необходимость вычислять координаты и приращения координат точек местности – необходимость решать прямую и обратную геодезическую задачи. Прямая задача заключается в нахождении координат конечной точки по координатам исходной, длине линии, их соединяющей и дирекционному углу этой линии. Для этого к известным координатам начала отрезка необходимо прибавить приращение координат (ортогональные проекции горизонтального проложения линии на оси координат): xB = xA + dcos α, yB = yA + d sin α. Обратная задача состоит в нахождении (по известным координатам начала xA, yA и конца xB, yB) длины горизонтального проложения s и дирекционного угла линии αAB. По катетам прямоугольного треугольника – приращениям координат ΔxAB = xA – xB, ΔyAB = yA – yB можно вычислить tg αAB.= (yA – yB)/(xA – xB) и, соответственно, сам дирекционный угол αAB. Вычислив величину arctg (yA – yB)/(xA – xB), мы найдём величину румба (острого угла между направлением линии и ближайшим направлением осевого меридана). Чтобы определить его название, достаточно определить знак приращений; если и Δx и Δy положительны, то румб – северо-восточный; если Δx – положителен и Δy – отрицателен, то румб северо-западный; если Δx - отрицательный и Δy – положительный, то румб – юго-восточный; если и Δx и Δy отрицательны, то румб – юго-западный. Зная название и величину румба, легко найти величину дирекционного угла (рис. 8). Зная приращения координат и дирекционный угол, можно найти длину отрезка: sAB = ΔxAB /cos αAB = (xA – xB)/cos αAB, s = ΔyAB /sin αAB = (yA – yB)/sin αAB,

 

 

Рис. 8. Определение дирекционного угла α по величине румба

 

 

3.1 Единицы мер

 

В повседневной деятельности постоянно приходится сталкиваться с необходимостью измерений. В случае «штучности» объектов достаточно простого счёта, иначе необходимо сравнение с некоторыми заранее определёнными величинами. Такой процесс сравнения называют измерением. Результат измерения – число; таким образом объект получает количественную характеристику.

Единицы мер.

При геодезических измерениях пользуются в основном линейными и угловыми мерами. Расстояния в геодезии измеряют в метрах, углы – в градусах. За единицу площади берут квадрат со стороной, равной единице длины, за единицу объёма – куб с соответствующей стороной. Следует помнить, что 1 гектар – это 10-2 км2, 100 ар (104 м2). Углы измеряются в градусах (1 градус – центральный угол с дуговым градусом в 1/360 окружности), минутах (1/60 градуса) и секундах (1/60 минуты). Иногда углы задаются в радианах, тогда для перехода следует помнить, что 1 радиан – это 206265 секунд. Иногда прямой угол делят на сто частей – гонов. Каждый гон делится на 100 десятичных минут, каждая минута – на 100 десятичных секунд. Тогда 1º = 1,11…д или 1д = 0,9º. В некоторых случаях необходимо измерить массу или время. Тогда масса измеряется в килограммах, время – в секундах.

Прямые и косвенные методы измерений.

Измерение – это процесс сравнения измеряемой величины и некоторой заранее определённой. Измерения бывают прямыми – когда измеряется непосредственно величина, и косвенные – когда измеряются некоторые величины, от которых искомая зависит функционально. Так, при измерении расстояния рулеткой используют прямой метод, при измерении площади – косвенный.

 

3.2 Классификация погрешностей и методы ослабления их влияния на результаты измерений.

 

Под воздействием ряда факторов при измерениях возникают погрешности измерений – разности между результатом измерения и истинным значением. Измерения всегда сопровождаются погрешностями. Погрешности подразделяются на грубые – превышающие некоторый заранее определённый предел (как правило, это просчёты); систематические - входящие в результаты измерений по определённой математической зависимости (постоянные, периодические, односторонне действующие); случайные – величину и знак которых предсказать невозможно. Систематическую постоянную погрешность можно проиллюстрировать следующим примером. Пусть мы измеряем линейкой c номинальной длиной один метр некий отрезок, в котором она укладывается ровно три раза, тогда мы получаем длину отрезка равной 3 м. Предположим, что реальная длина линейки l = 1,001 м. Тогда действительная длина отрезка есть l ×n = 3×1,001 = 3,003 м, а погрешность li = Δ l n = (1 – 1,001)×3 = 0,003. Если при измерении горизонтального угла α центр транспортира устанавливают не на вершину измеряемого угла A, а в точку A', то возникает погрешность, которую можно определить по формуле λ = AA' sin α. Это периодическая погрешность, изменяющаяся по периодическому закону.

Для ослабления влияния систематических погрешностей применяют: введение поправок (равных погрешности по модулю и противоположных по знаку); выбор методики измерений (погрешности входят в результаты измерений с противоположными знаками, что освобождает от их влияния среднее арифметическое); ограничивают условия измерений (минимизируют величину систематической погрешности).

 

Случайной погрешностью называют такую погрешность, величину и знак которой до проведения эксперимента (измерения) невозможно предсказать.

 

Случайные погрешности обладают рядом свойств (не превышают предельной погрешности, отклонения, равные по величине и противоположные по знаку – равновероятны, малые отклонения встречаются чаще больших), из которых вытекает, что среднее арифметическое случайных погрешностей стремится к нулю. Если имеется ряд результатов измерений одной и той же величины, то необходимо определить наиболее надёжное значение. За такое значение принимают арифметическую средину (среднее арифметическое). Среднее арифметическое является экспериментальной оценкой математического ожидания, поэтому среднее арифметическое называют вероятнейшим значением.

 

 

3.3 Точность измерений. Погрешности функций измеренных величин. Оценки точности измерений.

 

Точность измерений выражает степень близости результата измерения к действительному значению. Из-за наличия случайных погрешностей эта близость различна для разных результатов. Если одну и ту же величину измеряют одним и тем же способом при одних и тех же условиях, то результаты таких измерений называются равноточными. Точность измерений выражает степень близости результата измерений к действительному значению величины. Точность измерений характеризуют средней величиной случайной погрешности (случайного отклонения от истинного значения). В качестве теоретической характеристики берут среднее квадратическое отклонение:

 

   

где:

D – дисперсия случайной погрешности измерения Δ. Так как величина σ – чисто теоретическая, то обычно пользуются средней квадратической погрешностью, или эмпирическим средним квадратическим отклонением, которое определяется по формуле:

 

  m = √(ΣΔ i 2/n) - (формула Гаусса)  

где:

Δ i = li – Х – истинная погрешность i -того измерения. В случае, если не известно Х, используют отклонение результатов измерений li от вероятнейшего значения Х0

 

  m = √(Σν i 2/(n – 1)) - (формула Бесселя)  

где:

ν i = li – Х0.

При большом количестве измерений среднеквадратическая погрешность и квадратическое отклонение практически равны. Если известны средние квадратические погрешности некоторых величин, то можно определить среднеквадратическую погрешность функции от них. Если определена функция измеренных величин Φ = φ (x, y, …, z) и известны погрешности аргументов mx, my, mz, то квадрат средней квадратической погрешности функции вычисляют по формуле

 

  m2Φ = ( φ/∂x)2m2x +( φ/∂y)2m2y + … + ( φ/∂z)2m2z  

где:

( φ/∂x), ( φ/∂y), …, ( φ/∂z) - частные производные от функции φ по аргументам x, y, …, z. Так, для линейной функции u = a1x1 + a2x2 +… + anxn оценка точности имеет вид mu2 = Σ ai2mi2.

Пусть имеется ряд измерений одной величины: l1, l2, …, ln. Если средние квадратические погрешности этих измерений равны: m1 = m2 = … = mn, то такой ряд называют равноточным. Таковыми будут, например, измерения, проведенные по одной методике одним и тем же прибором наблюдателями одинаковой квалификации. Если хотя бы одна из величин имеет среднюю квадратическую погрешность, отличную от других, то такой ряд называют неравноточным. Такое может произойти, если некоторые из ряда измерений производились прибором одной точности, а остальные – прибором другой точности. Для определения вероятнейшего значения и оценки точности используется понятие о весе.

 

Вес результата измерения – это численная характеристика доверия к этому измерению. Вес pi в общем виде характеризуют следующим отношением: pi = c/m2i, где с – постоянное для данного рада положительное число.

 

Отметим, что от выбора численного значения величины «с» окончательный результат (вероятнейшее значение) и оценка его точности не зависят. Если даны результаты неравноточных измерений l1, l2, …, ln и их веса p1, p2, …, pn, то вероятнейшее значение вычисляют по формуле

 

  Х0 = Σpi l i/Σpi  

 

Для оценки точности вычисляют среднюю квадратическую погрешность измерения с весом pi = 1. Эту погрешность называют погрешностью единицы веса и вычисляют по формуле

 

  μ = √(Σpiδ2i /(n-1)),  

где:

δi = l i – Х0 – отклонение от вероятнейшего значения (весового среднего). Для оценки точности Х и результатов измерений используют формулы

 

  mX0 = M = μ/√Σpi, mi = μ/√pi.  

 

Для назначения весов не обязательно знать средние квадратические погрешности измерений. Обычно используют косвенные характеристики.

Одной из важных задач теории погрешностей является вычисление допустимых невязок и расхождений при проведении геодезических работ. Отправной точкой для расчётов допусков служит то, что невязка является погрешностью самой невязки. Так как погрешность – разность между результатом измерения и его точным значением, то Δ f = ff т = f, где Δ f – погрешность невязки. Следовательно, предельно возможное значение невязки (допустимая невязка), совпадает с предельной погрешностью этой невязки (f доп = Δ f пред). Предельную погрешность Δ f пред можно вычислить, если известна средняя квадратическая погрешность невязки m f; тогда Δ f пред = τm f, где τ может принимать значения 2, 2,5, 3 в зависимости от условий. Значение m f может быть вычислено по известным правилам оценки точности функций в зависимости от вида геодезических операций.

 

 

3.4 Угловые измерения. Общие принципы измерения углов на местности

 

Для определения взаимного положения точек необходимо уметь измерять углы и расстояния. Для определения планового положения необходимо знать горизонтальные и вертикальные углы. Горизонтальным называют угол AOB между проекциями линий (направлений на точки) OA' и OB' на горизонтальную плоскость Q (рис. 9). Иначе:

 

Горизонтальный угол – это двугранный угол между отвесными плоскостями, проходящими через его стороны.

 

Он отсчитывается по часовой стрелке. Вертикальным называют угол νab) между линей OA' (OB') и горизонтальной плоскостью. Угол между направлением на зенит и направлением данной линии называется зенитным расстоянием. Он отсчитывается от горизонтальной плоскости к линии. Для измерения горизонтального угла над его вершиной на отвесной линии помещают центр градуированного круга – лимба, - установленного горизонтально. Тогда угол между направлениями на местности будет равен разности отсчетов между сечениями лимба (a и b) вертикальными плоскостями, проходящими через линии OA' и OB' на местности. Если круг оцифрован по часовой стрелке, то β = b – a.

 

 
Рис. 9. Измерение горизонтальных и вертикальных углов.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...