Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Феррозондовые магнитометры.




В магнитометрах этого типа магниточувствительным элементом является феррозонд, который представляет собой два тонких и длинных стержня из пермаллоя (железо-никелевый сплав - магнитомягкий ферромагнетик), на которые во взаимообратном направлении намотана первичная возбуждающая обмотка. Кроме того, оба сердечника вместе с первичной обмоткой охвачены вторичной (измерительной) обмоткой (рис.4.4а). Магнитомягкие ферромагнетики характерны тем, что петля гистерезиса для них настолько узка, что ее можно рассматривать, как одну кривую (рис.4.4б). Принцип действия феррозонда состоит в следующем. С помощью внешнего источника через первичную (возбуждающую) обмотку пропускается ток частотой чаще всего 400 Гц). Если внешнее магнитное поле отсутствует, то исходная намагниченность сердечников равна нулю. При пропускании тока частотой в каждый полупериод импульсы индукции в сердечниках направлены противоположно и компенсируют друг друга (рис.4.4б). Поэтому общая индукция в ближайшем к сердечникам пространстве в каждый момент времени равна нулю и в измерительной обмотке сигнал не индуцируется, т.е. также равен нулю. При появлении внешнего поля Т (которое необходимо измерить) в каждый полупериод это поле с индукцией одного из сердечников совпадает, а индукция другого сердечника направлена противоположно, что равносильно сдвигу индукции сердечников. Общая (суммарная В ) индукция в пространстве у сердечников, складываясь, образует переменный магнитный поток, изменяющийся с частотой 2 (рис.4.2. б). Этот поток индуцирует в измерительной обмотке электрический сигнал частотой 2 и амплитудой, пропорциональной «сдвигу» индукции в обмотках - внешнему намагничивающему полю Т.

Для измерения этого поля необходимо только выделить с помощью фильтра (Ф) сигнал частотой 2 (800 Гц), усилить его усилителем (У), определить знак поля (фазу) фазочувствительным детектором (ФЧД) и измерить его амплитуду измерителем (И). При этом прибор, измеряющий амплитуду сигнала, может быть проградуирован в единицах напряженности или индукции магнитного поля. Такой феррозонд называется «феррозонд типа второй гармоники». Полезной для магнитных съемок особенностью такого феррозонда является то, что он может измерять составляющую напряженности магнитного поля, направленную по оси зонда. То есть, если поле Т будет направлено перпендикулярно сердечникам, то «сдвига» индукции в обмотках не будет и

Рис. 4.4. Принцип действия феррозондового магнитометра типа второй гармоники.

сигнала во вторичной обмотке не будет. Эта особенность позволяет проводить так называемые компонентные измерения (т.е.измерения трех составляющих по осям) индукции магнитного поля, что относится к достоинствам метода. Недостатком метода является наличие смещения нуля прибора, что даже при высоком пороге чувствительности прибора в 1нТл не позволяет проводить измерения с высокой точностью. Феррозонд имеет также другие наименования: зонд магнитного насыщения, магнитомодуляционный датчик (ММД). В зарубежной литературе он называется flux – date(флакс-гейт) - потокопропускающий. На этом принципе основаны использовавшиеся с 30-х до конца 80-х годов аэромагнитометры (АМФ-21, АММ-13 и др.), наземные магнитометры (М-17, М-29). В настоящее время на этом принципе используются скважинные магнитометры (ТСМК-30,КСП-38 и др.).

Протонные магнитометры.

Протонный магнитометр впервые был разработан в 1953 г. М. Паккардом и Р. Варианом(США) и в СССР - в 1957 г.А. Я. Ротштейном и В. С. Цирелем. Эти магнитометры основаны на принципе свободной ядерной прецессии протонов -ядер атома водорода. Протон как движущаяся вращающаяся заряженная частица обладает определенным моментом количества движения (спином) р и магнитным моментом .Магнитное поле протона аналогично полю стержневого магнита, ориентированного вдоль оси вращения частицы. Протон как магнит стремится установиться своей магнитной осью в направлении магнитного поля Земли (как магнитная стрелка компаса), а свойство гироскопа (волчка)препятствует этому. Поэтому ось вращения (и магнитный момент) протона начинает описывать конические поверхности вокруг направления вектора внешнего магнитного поля ТВН. (рис.4.5,а). Такое движение называется прецессией. Прецессия называется свободной, если она происходит без воздействия на систему протонов внешних сил.

Рис. 4.5. Принцип действия ядерно-протонных магнитометров.

Теоретически установлено и экспериментально подтверждено, что частота свободной прецессии протонов в магнитном поле прямо пропорциональна модулю вектора напряженности ТВН. внешнего магнитного поля и связана с ним простым соотношением, которое называется равенством Лармора: f=( где = р/ - гиромагнитное отношение протона, т.е. отношение его механического момента вращения р к магнитному моменту . Поскольку постоянная величина определена с очень высокой точностью (относительная погрешность порядка 10-6) и не зависит от любых внешних факторов (температура, давление и др.), результаты измерений этим способом характеризуются очень высокой точностью и стабильностью.

Магнитные моменты различных протонов ориентированы антипараллельно, поэтому в обычном состоянии вследствие тепловых соударений частиц магнитные моменты отдельных протонов ориентированы хаотично и их суммарный магнитный момент близок к нулю. Поэтому используются специальные способы поляризации рабочего вещества, т.е.ориентировки магнитных моментов элементарных частиц - протонов. Для измерения магнитного поля удобнее всего использовать простейшие атомные ядра — протоны, так как они в жидкостях дают наиболее острый и интенсивный резонанс. Магнитоизмерительный преобразователь (МИП) представляет собой сосуд с протонсодержащей жидкостью (обычно это был очищенный керосин), помещенный в катушке с проводом (рис.4.5 б). Если через обмотку МИП пропустить сильный электрический ток, создающий в направлении оси катушки магнитное поле НК напряженностью порядка 100 Э (переключатель К подключен к блоку питания), то под действием поля НК происходит магнитная поляризация рабочего вещества – множество содержащихся в нем протонов приобретут ориентировку магнитных моментов в направлении вектора напряженности магнитного поля Нк. После резкого отключения тока (переключатель К подключается к частотомеру)протоны начнут согласованно прецессировать вокруг вектора напряженности внешнего магнитного поля Т, наводя в той же обмотке катушке Э.Д.С. с частотой прецессии. Через несколько секунд прецессия затухает из-за теплового соударения частиц и потери синфазности прецессии протонов, но этого времени вполне достаточно, чтобы преобразовать сигнал и определить его частоту. Частотный выход прибора обеспечивает возможность регистрации результатов измерений в цифровом виде. Основным методом измерений частоты сигнала свободной прецессии в протонных магнитометрах является метод подсчета числа периодов (сигналов) прецессии в течение фиксированного интервала времени, определяемого по периодам эталонной частоты специального кварцевого генератора. Регистрации показаний может осуществляться различными устройствами: аналоговым самописцем (или фотоосциллографом); цифропечатающим устройством; цифровым перфораторным или магнитным регистратором ит. д.Иногда для удобства непосредственно записывают не частоту сигнала ядерной прецессии, а частоту биений, образующихся между частотой сигналов прецессии и эталонной частотой специального кварцевого генератора (близкой к частоте прецессии): fб = fс– fкв г Данный метод обеспечивает большую точность измерений частоты, но мало пригоден для их автоматизации. Можно поступить наоборот: обеспечить подсчет периодов эталонной частоты в течение фиксированного числа сигналов ядерной прецессии. В этом случае получается цифровой результат, обратно пропорциональный индукции поля, что не позволяет производить непосредственный отсчет в единицах магнитной индукции, как в предыдущем случае. Но в данном методе не требуется умножитель частоты, необходимый при непосредственных отсчетах показаний. В последних модификациях ядерно-протонных магнитометров применяется метод динамической поляризации. В методе динамической поляризации ядер используется эффект Оверхаузера, заключающийся в том, что в некоторых веществах с сильным взаимодействием ядерных спинов с электронными можно создать дополнительную поляризацию одной спиновой системы, например, ядерной, за счет поляризации другой, например, электронной. Рабочее вещество возбуждается на частоте электронного резонанса с помощью радиочастотного поля (примерно 56 МГц), а передача энергии протонам происходит за счет внутренних взаимодействий. Существует класс веществ, для которых может быть реализовано указанное явление. К ним принадлежат растворы натрия в аммиаке, растворы в органических жидкостях ряда свободных устойчивых радикалов гидразинового ряда (в частности, дифенил-пикрилгидрозил), а также водные и бензольные растворы свободного радикала дисульфонатапироксиламина (соль Фреми) и некоторых других радикалов. Перечисленные растворы дают возможность наблюдать динамическую поляризацию в слабых магнитных полях, в том числе в земном магнитном поле. Метод динамической поляризации позволяет сократить продолжительность циклаизмерения, а также проводить измерения одновременно с процессом поляризации. К недостаткам метода следует отнести недолговечность некоторых видов рабочего вещества, что создает неудобства при производственных магнитных съемках. На методике динамической поляризации ядер построены отечественные протонные магнитометры ММП-203М, аэромагиитометры ММВ-215. Канадская фирма Geotech разработала на этом принципе вертикальный аэромагнитометр-градиентометр GRAD-1 с чувствительностью 0,01нТл для каждого датчика и 0,025 нТл/м для градиентных измерений. Протонные магнитометры обладают высокой точностью (1 нТл), стабильностью работы, высокой производительностью, не требуют нивелировки и мало чувствительны к отклонениям от оптимальной ориентировки МИП прибора при измерении. В настоящее время это наиболее широко применяемые приборы при проведении наземных съемок (ММП-203М, МИНИМАГ), аэромагнитных (ММС-213, ММС-214) и гидромагнитных (АПМ-3, МПМ-3) съемок, а также скважинных магнитных измерений(МСП-2).Полевые протонные магнитометры ММП-203, ММП-203М, МИНИМАГконструктивно выполнены в виде двух раздельных блоков – магнитоизмерительного преобразователя (датчика) и измерительного пульта. Датчик протонного (ядерного) магнитометра обычно представляет собой цилиндрический сосуд из органического стекла с жидкостью, содержащей протоны (смесь воды со спиртом, керосин, раствор соли Фреми и т д.). Сосуд помещается в многовитковую катушку, настроенную в резонанс с частотой ожидаемого сигнала. Эта катушка используется как для возбуждения (поляризация), так и для съемки сигнала в виде ЭДС определенной частоты (эти функции катушки разделены во времени).

Квантовые магнитометры.

По установившейся отраслевой (геолого-геофизической) терминологии квантовыми называются магнитометры, работающие на принципе оптической накачки, хотя по международной терминологии группа квантовых магнитометров значительно шире. Магнитометры на принципе оптической накачки основаны на взаимодействии магнитных моментов атомов рабочего вещества (пары щелочных металлов - Na, K, Rb, Cz или инертные газы He, Ar, Kr и др.) с внешним магнитным полем (эффект Зеемана). Сущность эффекта Зеемана состоит в том, что энергетические уровни атомов жидких, газообразных и парообразных веществ, находящихся в магнитном поле, расщепляются на несколько подуровней. Частота излучения или поглощения f(в Гц) при переходе электрона с одного подуровня на другой определяется:f = ( Б / h) ТВН, (3.23)где Б - магнетон Бора (магнитный момент электрона); h - постоянная Планка (коэффициент пропорциональности между квантом энергии и циклической частотой его излучения), ТВН -напряженность внешнего магнитного поля. Из формулы (3.23) видно, что если измерить частоту излучения f при переходе электрона с одного подуровня на другой, можно определить значение поля ТВН. Но наблюдать переход отдельных атомов с одного зеемановского уровня на другой практически невозможно. Необходимо добиться согласованного возбуждения множества атомов и последующего перехода их всех сразу в невозбужденное состояние. Этого добиваются с помощью принципа оптической накачки. Схематически принцип оптической накачки или оптической ориентации атомов состоит в следующем (рис.4.6.).Под действием внешнего магнитного поля ТВН, в соответствии с эффектом Зеемана, энергетические уровни атомов расщепляются на подуровни А,В,С (рис.4.6а). Поэтому преимущественную заселенность подуровня В обеспечивают облучением рабочего вещества светом, в котором нет спектральной линии В. Тогда, по законам квантовой физики, переход из В в С запрещен (невозможен) из А в С возможен, из С в А и В равновероятен. Постепенно(рис. 4.6 б - г) атомы перейдут в состояние В. Поглощение света закончится, вещество магнитно поляризуется (одинаковая поляризация магнитных моментов атомов). Отфильтровка спектральной линии ВС достигается круговой поляризацией монохроматического света. Детектирование сигнала при оптической накачке осуществляется по изменению интенсивности проходящего света. При воздействии дополнительного радиочастотного магнитного поля (усиливающего выравнивание заселенности) прозрачность рабочего вещества уменьшается, что фиксируется фотоэлементом в виде электрического сигнала.

Минимум света наблюдается при соответствии частоты радиополя (fP) круговой частоте резонансного перехода = 2 = ВН, (3.24) где - гиромагнитное отношение электрона. Нетрудно заметить, что и в основе способа оптической накачки, и в основе способа ядерной прецессии - одна и та же формула, но способы поляризации рабочего вещества различны. Именно по этой причине за рубежом и ядерно-протонные и квантовые магнитометры

Рис. 4.6. К пояснению принципа оптической накачки

объединяют под общим названием «ядерные магнитометры».Порог чувствительности магнитометров, основанных на принципе оптической накачки, составляет 1 - 0.01 нТл в зависимости от цикла измерений. Их показания менее устойчивы, чем у протонных магнитометров, однако они имеют лучшую частотную характеристику, могут работать и в слабо-, и в сильно градиентных полях. На принципе оптической накачки построены квантовые аэромагнитометры ММ-305,КАМ-28, пешеходные М-33, ММП - 303, ММ -60.Порядок работы с этими магнитометрами также достаточно прост и аналогичен порядку работы с магнитометром ММП -203М.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...