Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Методы взаимодействия абонентов в сети по Модели взаимодействия открытых систем(ОСИ).




Модель OSI допускает два основных метода взаимодействия абонентов в сети:

· Метод взаимодействия без логического соединения (или метод дейтаграмм).

· Метод взаимодействия с логическим соединением.

Метод дейтаграмм – это простейший метод, в котором каждый пакет рассматривается как самостоятельный объект.

Пакет при этом методе передается без установления логического канала, то есть без предварительного обмена служебными пакетами для выяснения готовности приемника, а также без ликвидации логического канала, то есть без пакета подтверждения окончания передачи. Дойдет пакет до приемника или нет – неизвестно (проверка факта получения переносится на более высокие уровни).

Метод дейтаграмм предъявляет повышенные требования к аппаратуре (так как приемник всегда должен быть готов к приему пакета). Достоинства метода в том, что передатчик и приемник работают независимо друг от друга, к тому же пакеты могут накапливаться в буфере и затем передаваться вместе, можно также использовать широковещательную передачу, то есть адресовать пакет всем абонентам одновременно. Недостатки метода – это возможность потери пакетов, а также бесполезной загрузки сети пакетами в случае отсутствия или неготовности приемника.

Метод с логическим соединением разработан позднее, чем метод дейтаграмм, и отличается усложненным порядком взаимодействия.

При этом методе пакет передается только после того, как будет установлено логическое соединение (канал) между приемником и передатчиком. Каждому информационному пакету сопутствует один или несколько служебных пакетов (установка соединения, подтверждение получения, запрос повторной передачи, разрыв соединения). Логический канал может устанавливаться на время передачи одного или нескольких пакетов.

Метод с логическим соединением, как уже говорилось, более сложен, чем метод дейтаграмм, но гораздо надежнее, поскольку к моменту ликвидации логического канала передатчик уверен, что все его пакеты дошли до места назначения, причем дошли успешно. Не бывает при данном методе и перегрузки сети из-за бесполезных пакетов. Недостаток метода с логическим соединением состоит в том, что довольно сложно разрешить ситуацию, когда принимающий абонент по тем или иным причинам не готов к обмену, например, из-за обрыва кабеля, отключения питания, неисправности сетевого оборудования, сбоя в компьютере. При этом требуется алгоритм обмена с повторением неподтвержденного пакета заданное количество раз, причем важен и тип неподтвержденного пакета. Не может этот метод передавать широковещательные пакеты (то есть адресованные всем абонентам), так как нельзя организовать логические каналы сразу со всеми абонентами.

Примеры протоколов, работающих по методу дейтаграмм — это протоколы IP и IPX.

Примеры протоколов, работающих по методу с логическим соединением – это TCP и SPX.

Именно для того, чтобы объединить достоинства обоих методов, эти протоколы используются в виде связанных наборов: TCP/IP и IPX/SPX, в которых протокол более высокого уровня (TCP, SPX), работающий на базе протокола более низкого уровня (IP, IPX), гарантирует правильную доставку пакетов в требуемом порядке.

Протоколы IPX/SPX, разработанные компанией Novell, образуют набор (стек), используемый в сетевых программных средствах довольно широко распространенных локальных сетей Novell (NetWare). Это сравнительно небольшой и быстрый протокол, поддерживающий маршрутизацию. Прикладные программы могут обращаться непосредственно к уровню IPX, например, для посылки широковещательных сообщений, но значительно чаще работают с уровнем SPX, гарантирующим быструю и надежную доставку пакетов. Если скорость не слишком важна, то прикладные программы применяют еще более высокий уровень, например, протокол NetBIOS, предоставляющий удобный сервис. Компанией Microsoft предложена своя реализация протокола IPX/SPX, называемая NWLink. Протоколы IPX/SPX и NWLink поддерживаются операционными системами NetWare и Windows. Выбор этих протоколов обеспечивает совместимость по сети любых абонентов с данными операционными системами.

Набор (стек) протоколов TCP/IP был специально разработан для глобальных сетей и для межсетевого взаимодействия. Он изначально ориентирован на низкое качество каналов связи, на большую вероятность ошибок и разрывов связей. Этот протокол принят во всемирной компьютерной сети Интернет, значительная часть абонентов которой подключается по коммутируемым линиям (то есть обычным телефонным линиям). Как и протокол IPX/SPX, протокол TCP/IP также поддерживает маршрутизацию. На его основе работают протоколы высоких уровней, такие как SMTP, FTP, SNMP. Недостаток протокола TCP/IP —более низкая скорость работы, чем у IPX/SPX. Однако сейчас протокол TCP/IP используется и в локальных сетях, чтобы упростить согласование протоколов локальных и глобальных сетей. В настоящее время он считается основным в самых распространенных операционных системах.

В стек протоколов TCP/IP часто включают и протоколы всех верхних уровней. И тогда уже можно говорить о функциональной полноте стека TCP/IP.

Как протокол IPX, так и протокол IP являются самыми низкоуровневыми протоколами, поэтому они непосредственно инкапсулируют свою информацию, называемую дейтаграммой, в поле данных передаваемого по сети пакета. При этом в заголовок дейтаграммы входят адреса абонентов (отправителя и получателя) более высокого уровня, чем MAC-адреса, – это IPX-адреса для протокола IPX или IP-адреса для протокола IP. Эти адреса включают номера сети и узла, хоста (индивидуальный идентификатор абонента). При этом IPX-адреса более простые, имеют всего один формат, а в IP-адрес входить три формата (класса A, B и C), различающиеся значениями трех начальных битов.

Интересно, что IP-адрес не имеет никакой связи с MAC-адресами абонентов. Номер узла в нем присваивается абоненту независимо от его MAC-адреса. В качестве идентификатора станции IPX-адрес включает в себя полный MAC-адрес абонента.

Номер сети – это код, присвоенный каждой конкретной сети, то есть каждой широковещательной области общей, единой сети. Под широковещательной областью понимается часть сети, которая прозрачна для широковещательных пакетов, пропускает их беспрепятственно.

Протокол NetBIOS (сетевая базовая система ввода/вывода) был разработан компанией IBM для сетей IBM PC Network и IBM Token-Ring по образцу системы BIOS персонального компьютера. С тех пор этот протокол стал фактическим стандартом (официально он не стандартизован), и многие сетевые операционные системы содержат в себе эмулятор NetBIOS для обеспечения совместимости. Первоначально NetBIOS реализовывал сеансовый, транспортный и сетевой уровни, однако в последующих сетях на более низких уровнях используются стандартные протоколы (например, IPX/SPX), а на долю эмулятора NetBIOS остается только сеансовый уровень. NetBIOS обеспечивает более высокий уровень сервиса, чем IPX/SPX, но работает медленнее.

На основе протокола NetBIOS был разработан протокол NetBEUI, который представляет собой развитие протокола NetBIOS до транспортного уровня. Однако недостаток NetBEUI состоит в том, что он не поддерживает межсетевое взаимодействие и не обеспечивает маршрутизацию. Поэтому данный протокол используется только в простых сетях, не рассчитанных на подключение к Интернет. Сложные сети ориентируются на более универсальные протоколы TCP/IP и IPX/SPX. Протокол NetBEUI в настоящее время считается устаревшим, хотя даже в операционной системе Windows XP предусмотрена его поддержка, правда, только как дополнительная опция.

Наконец, упоминавшийся уже набор протоколов OSI – это полный набор (стек) протоколов, где каждый протокол точно соответствует определенному уровню стандартной модели OSI. Набор содержит маршрутизируемые и транспортные протоколы, серии протоколов IEEE 802, протокол сеансового уровня, представительского уровня и несколько протоколов прикладного уровня. Пока широкого распространения этот набор протоколов не получил, хотя он и полностью соответствует эталонной модели OSI.

Стек протоков TCP/IP.

Стек протоколов TCP/IP — набор сетевых протоколов передачи данных, используемых в сетях, включая сеть Интернет. Название TCP/IP происходит из двух наиболее важных протоколов семейства — Transmission Control Protocol (TCP) и Internet Protocol (IP), которые были разработаны и описаны первыми в данном стандарте. Также изредка упоминается как модель DOD в связи с историческим происхождением от сети ARPANET из 1970 годов (под управлением DARPA, Министерства обороны США)

Протоколы работают друг с другом в стеке (англ. stack, стопка) — это означает, что протокол, располагающийся на уровне выше, работает «поверх» нижнего, используя механизмы инкапсуляции. Например, протокол TCP работает поверх протокола IP.

Стек протоколов TCP/IP включает в себя четыре уровня:

· прикладной уровень (application layer),

· транспортный уровень (transport layer),

· сетевой уровень (internet layer),

· канальный уровень (link layer).

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI. На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.

Распределение протоколов по уровням модели TCP/IP
  Прикладной «7 уровень» напр., HTTP, RTSP, FTP, DNS
  Транспортный напр., TCP, UDP, SCTP, DCCP (RIP, протоколы маршрутизации, подобные OSPF, что работают поверх IP, являются частью сетевого уровня)
  Сетевой Для TCP/IP это IP (вспомогательные протоколы, вроде ICMP и IGMP, работают поверх IP, но тоже относятся к сетевому уровню; протокол ARP является самостоятельным вспомогательным протоколом, работающим поверх канального уровня)
  Канальный Ethernet, IEEE 802.11 Wireless Ethernet, SLIP, Token Ring, ATM и MPLS, физическая среда и принципы кодирования информации, T1, E1

На прикладном уровне работает большинство сетевых приложений.

Эти программы имеют свои собственные протоколы обмена информацией, например, HTTP для WWW, FTP (передача файлов), SMTP (электронная почта), SSH(безопасное соединение с удалённой машиной), DNS (преобразование символьных имён в IP-адреса) и многие другие.

В массе своей эти протоколы работают поверх TCP или UDP и привязаны к определённому порту, например:

· HTTP на TCP-порт 80 или 8080,

· FTP на TCP-порт 20 (для передачи данных) и 21 (для управляющих команд),

· SSH на TCP-порт 22,

· запросы DNS на порт UDP (реже TCP) 53,

· обновление маршрутов по протоколу RIP на UDP-порт 520.

Эти порты определены Агентством по выделению имен и уникальных параметров протоколов (IANA).

К этому уровню относятся: Echo, Finger, Gopher, HTTP, HTTPS, IMAP, IMAPS, IRC, NNTP, NTP, POP3, POPS, QOTD, RTSP, SNMP, SSH, Telnet, XDMCP.

Протоколы транспортного уровня могут решать проблему негарантированной доставки сообщений («дошло ли сообщение до адресата?»), а также гарантировать правильную последовательность прихода данных. В стеке TCP/IP транспортные протоколы определяют, для какого именно приложения предназначены эти данные.

Протоколы автоматической маршрутизации, логически представленные на этом уровне (поскольку работают поверх IP), на самом деле являются частью протоколов сетевого уровня; например OSPF (IP идентификатор 89).

TCP (IP идентификатор 6) — «гарантированный» транспортный механизм с предварительным установлением соединения, предоставляющий приложению надёжный поток данных, дающий уверенность в безошибочности получаемых данных, перезапрашивающий данные в случае потери и устраняющий дублирование данных. TCP позволяет регулировать нагрузку на сеть, а также уменьшать время ожидания данных при передаче на большие расстояния. Более того, TCP гарантирует, что полученные данные были отправлены точно в такой же последовательности. В этом его главное отличие от UDP.

UDP (IP идентификатор 17) протокол передачи датаграмм без установления соединения. Также его называют протоколом «ненадёжной» передачи, в смысле невозможности удостовериться в доставке сообщения адресату, а также возможного перемешивания пакетов. В приложениях, требующих гарантированной передачи данных, используется протокол TCP.

UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка.

И TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом.

Сетевой уровень изначально разработан для передачи данных из одной (под)сети в другую. Примерами такого протокола является X.25 и IPC в сети ARPANET.

С развитием концепции глобальной сети в уровень были внесены дополнительные возможности по передаче из любой сети в любую сеть, независимо от протоколов нижнего уровня, а также возможность запрашивать данные от удалённой стороны, например в протоколе ICMP (используется для передачи диагностической информацииIP-соединения) и IGMP (используется для управления multicast-потоками).

ICMP и IGMP расположены над IP и должны попасть на следующий — транспортный — уровень, но функционально являются протоколами сетевого уровня, и поэтому их невозможно вписать в модель OSI.

Пакеты сетевого протокола IP могут содержать код, указывающий, какой именно протокол следующего уровня нужно использовать, чтобы извлечь данные из пакета. Это число — уникальный IP-номер протокола. ICMP и IGMP имеют номера, соответственно, 1 и 2.

К этому уровню относятся: DHCP[1], DVMRP, ICMP, IGMP, MARS, PIM, RIP, RIP2, RSVP

Канальный уровень описывает, каким образом передаются пакеты данных через физический уровень, включая кодирование (то есть специальные последовательности бит, определяющих начало и конец пакета данных). Ethernet, например, в полях заголовка пакета содержит указание того, какой машине или машинам в сети предназначен этот пакет.

Примеры протоколов канального уровня — Ethernet, IEEE 802.11 Wireless Ethernet, SLIP, Token Ring, ATM и MPLS.

PPP не совсем вписывается в такое определение, поэтому обычно описывается в виде пары протоколов HDLC/SDLC.

MPLS занимает промежуточное положение между канальным и сетевым уровнем и, строго говоря, его нельзя отнести ни к одному из них.

Канальный уровень иногда разделяют на 2 подуровня — LLC и MAC.

Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель, витая пара, оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов, модуляцию, амплитуду сигналов, частоту сигналов, способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

Существуют разногласия в том, как вписать модель TCP/IP в модель OSI, поскольку уровни в этих моделях не совпадают.

К тому же, модель OSI не использует дополнительный уровень — «Internetworking» — между транспортным и сетевым уровнями. Примером спорного протокола может быть ARP или STP.

Вот как традиционно протоколы TCP/IP вписываются в модель OSI:

Распределение протоколов по уровням модели OSI
  Прикладной напр., HTTP, SMTP, SNMP, FTP, Telnet, SSH, SCP, SMB, NFS, RTSP, BGP
  Представления напр., XDR, AFP, TLS, SSL
  Сеансовый напр., ISO 8327 / CCITT X.225, RPC, NetBIOS, PPTP, L2TP, ASP
  Транспортный напр., TCP, UDP, SCTP, SPX, RTP, ATP, DCCP, GRE
  Сетевой напр., IP, ICMP, IGMP, CLNP, OSPF, RIP, IPX, DDP, ARP
  Канальный напр., Ethernet, Token ring, HDLC, PPP, X.25, Frame relay, ISDN, ATM, MPLS
  Физический напр., электрические провода, радиосвязь, волоконно-оптические провода, инфракрасное излучение

Обычно в стеке TCP/IP верхние 3 уровня модели OSI (прикладной, представительский и сеансовый) объединяют в один — прикладной. Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...