Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Отливки из магниевых сплавов




       Литейные свойства. Магниевые литейные сплавы по сравнению с алюминиевыми обладают худшими литейными свойствами: пониженной жидкотекучестью, большой (1,2—1,5%) усадкой, склонностью к образованию горячих трещин, пониженной гер­метичностью, высокой склонностью к окислению в жидком и твер­дом состоянии, способностью воспламеняться в жидком состоянии. Магниевые сплавы имеют большой интервал кристаллизации, склонны к растворению газов и поэтому в отливках часто обра­зуются микрорыхлоты. Отливки нз магниевых сплавов склонны к короблению при затвердевании и термической обработке.

       Наибольшее применение для литья в кокиль нашли сплавы МЛ5 (системы Mg — А1 — Zn), МЛ6 (системы Mg — Al — Zn), МЛ12 (системы Mg — Zn — Zr) МЛ10 (Mg — Nd — Zr).

       Влияние кокиля на свойства отливок. Кокиль практически не вступает в химическое взаимодействие с магниевым расплавом, что уменьшает окисляемость сплава, улучшает качество отливок. Пониженная жидкотекучесть сплавов вызывает необходимость за­ливать их в кокили при повышенной температуре, особенно при изготовлении тонкостенных отливок. Это приводит к повышению окисляемости сплава, вероятности попадания окислов в отливку, увеличению размеров зерна в структуре, ухудшению механических свойств отливки.

       Для предотвращения горячих трещин в отливках, обусловлен­ных повышенной усадкой сплавов, необходимо осуществлять «подрыв» неподатливых металлических стержней или использо­вать песчаные стержни; модифицирование сплавов церием и вис­мутом повышает трещиноустойчивость сплавов.

       Положение отливки из магниевого сплава в кокиле име­ет особенно важное значение для направленного ее затвердевания и питания. Для питания отливки обязательно используют прямые или отводные прибыли; для лучшей их работы прибыли выполняют в стержневых, асбестовых или керамических вставках.

       Литниковые системы для магниевых сплавов расширяющиеся: fc:fк:fп= 1:2:3. Для крупных и сложных отливок fc:fк:fп= 1:4:6.

       Размеры элементов литниковых систем определяют, пользуясь формулами. (2.1), (2.3) и зависимостями коэффициентов расхода, приведенными выше. Объем прямой или отводной прибыли опре­деляют из соотношения Vпр=(2-2,5) Vп.о,где Vп.о — объем питаемого узла отливки. Способы подвода расплава в кокиль и кон­струкции литниковых систем такие же как и для алюминиевых сплавов (см. рис. 2.15). Особое внимание следует обращать на рассредоточенный подвод расплава в рабочую полость. Этовызвано пониженной жидкотекучестью магниевых сплавов и их малой теплопроводностью. Последнее свойство при сосредоточенном под­воде приводит к замедленному охлаждению отлпвки в месте под­вода питателя и образованию в эгом месте усадочных дефектов - пористости, рыхлот, трещин.

       Технологические режимы литья магнеевых сплавов в кокиль назначают с учетом их литейных свойств, конфигурации отливки и предьявляемых к ней требований.

       Состав и толщину краски рабочей полости кокиля принимают но рекомендациям табл. 2.3. Для устранения окисления и загорания сплава при заливке рекомендуется покрывать по-верхность кокиля и кромки заливочной чаши серным цветом, кото-рый сгорая, создает защитную среду вокруг отливки.

       Температуру нагрева кокиля перед залинкой назна-чают в пределах указанных в табл. 2.4.

       Температура заливки магниевых сплавов зависит от химического состава, но обычно на 100- 150 К выше линии лик­видна, что вызвано их пониженной жидкотекучестью. Обычно температура заливки составляет 1000-- 1020 К для тонкостенных отливок и 950-980 К для массивных, толстостенных

Отливки из медных сплавов

       Литейные свойства. Литьем в кокиль изготовляют отливки из латуней, бронз, а также чистой меди.

Латуии имеют обычно небольшой интервал кристаллизации, хорошую жндкотекучесть, но большую усадку; 1,5—2,5% в зави-симости от химического состава. Латуни мало склонны к образо­ванию усадочной пористости, но, как и все медные сплавы, ин­тенсивно, растворяют водород, особенно кремнистые латуни, отлив­ки из которых часто поражаются газовой пористостью.

Бронзы оловянные имеют высокую жидкотекучесть, повы­шенную усадку (1.4—1,6%), большой интервал кристаллизации, а потому и повышенную склонность к образованию усадочной пористости в отливках. Алюминиевые бронзы имеют небольшой интервал кристаллизации, большую усадку (1,7—2,5%); отливки нз них получаются плотными, но они склонны к образованию окис­ных плен из-за повышенной окисляемости содержащегося в них алюминия. Плены, попадающие в отливку, снижают ее механиче­ские свойства и герметичность. Кремнистые бронзы, аналогично кремнистым латупям, склонны к образованию газовой пористости.

Свинцовые бронзы склонны к ликвации, ухудшающей свойства отливок.

       Чистая медь имеет низкую жидкотекучесть, высокую усад­ку (1,8—2%), интенсивно растворяет газы, которые при затвер­дев а ни и отливки образуют газовую пористость и раковины в ней. При плавке мель интенсивно окисляется. Окислы меди ухудшают ее литейные свойства, а также механические свойства и электро­проводность отливок.

Влияние кокиля на качество отливок. Высокая скорость охлаж­дения и затвердевания при литье в кокиль благоприятно влия­ет на качество отливок: повышаются их механические свойства, герметичность, плотность, улучшается структура. Повышение скорости охлаждения способствует приближению характера за­твердевания широкоинтервальных сплавов к последовательному. Поэтому, например, отливки из оловянных бронз в кокиль имеют большую плотность, чем при литье в песчаные формы. Отлнвки из кремнистых латуне.й и бронз меньше поражены газовой порис­тостью, так как высокая скорость охлаждения расплава препят­ствует выделению газов из раствора. Повышенная скорость за­твердевания отливок из свинцовых бронз уменьшает ликвацию, способствует измельчению включений свинца, что повышает ан­тифрикционный свойства отливок.

       Отливки из медных сплавов при литье в кокиль часто поражены трещинами, так к.а-к кокиль неподатлив. Это затрудняет полу­чение в кокилях сложных тонкостенных отливок. Главная мера -предупреждения этих дефектов — хорошее раскисление и рафини­рование сплавов — освобождение их от окислов, сильно влияю­щих на трещйноустойчивость сплавов, а также создание условий для направленного затвердевания и питания отливки.

       Положение отливки в кокиле должно обеспечивать направленное затвердевание.и питание ее при усадке. Поэтому располагают массивные ее части вверху и на них устанавливают прибыли.

       Литниковая система (рис. 2.16,) для медных сплавов должна обеспечивать плавное заполнение формы и питать отливку в процессе ее затвердевания. Поэтому литники делают большого сечения, одновременно выполняющими функции прибылей. Между стояком и питателем устанавливают питающие бобышки Б,кр- торых происходит также частичное шлакозадержание. Для отли­вок из алюминиевых, марганцевых и кремнистых бронз используют нижний подвод расплава через зигзагообразные и наклонные стояки (рис. 2.16, б, в), шлакоуловители и плоские щелевидные питатели. Тонкостенные мелкие отливки заливают сверху (рис. 2.16, а), обычно с подводом расплава в питающую бобыш­ку Б. Для отливок из медных сплавов применяют как расширяю­щиеся, так и суживающиеся литниковые системы. Для сплавов, склонных к образованию плен (алюминиевых, марганцевых бронз), используют расширяющиеся литниковые системы ( fп:fл.х:fс=3:2: 1), а для латуни — суживающиеся (fп:fл.х:fс=1:2,5: 3,5).

       Размеры элементов литниковой системы определяют, пользуясь известным гидравлическим методом расчета [8].

       Технологические режимы назначают в зависимости от литейных свойств сплава, конфигурации отливки и требований к ней.

       В состав красок рабочих поверхностей кокилей вводят вещества, способные при взаимодействии с расплавом испаряться и газифицироваться с образованием восстановительной среды, предотвращающей окисление расплава (см. табл. 2.3). Обычно это масла, графит, а также органические лаки, термореактивные смолы. Такие покрытия наносят на поверхность кокиля перед каж­дой заливкой или через две-три заливки.

       Температуру нагрева кокиля перед заливкой назна­чают поданным табл. 2.4. Для получения отливок высокого качест­ва из свинцовых бронз необходимо обеспечить высокую скорость затвердевания. Это достигается охлаждением кокилей водой, использованием для кокилей высокотеплопроводных материалов. Температура заливки медных сплавов зависит от хими­ческого состава и конфигурации отливки. Оловянные бронзы заливают при температурах 1420—1470 К; алюминиевые бронзы — при 1370—1430 К. Кремнистые латуни заливают при температурах 1250—1310 К, свинцовые латуни при 1300—1380 К. Массивные отливки заливают при температурах, близких к нижнему пределу рекомендованных, тонкостенные — к верхнему.

       Температуру выбивки отливок из кокилей назначают в зависимости от химического состава сплава, толщины стенки отливки и ее конфигурации.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...