Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Обратно, к принципу неопределенности Гейзенберга




 

Такова вкратце история введения постоянной Планка. Но для наших целей важнее всего отметить, что постоянная Планка – это единица «действия», то есть та же величина, которая говорит нам, насколько нужно повернуть часы. Современное значение постоянной Планка равно 6,626 × 10–34 кг·м²/с, что является крошечной величиной по меркам повседневности. Это и служит причиной того, почему мы не замечаем в повседневной жизни ее всепроникающего действия.

Вспомните, что мы писали о действии, соответствующем прыжку частицы из одной точки в другую: оно равно массе частицы, умноженной на квадрат расстояния, на которое совершен прыжок, и деленной на временной интервал, в течение которого этот прыжок происходит. Измеряется оно в кг·м²/с, как и постоянная Планка, так что если мы просто разделим действие на постоянную Планка, то все единицы сократятся и получится чистое число. Согласно Фейнману, это чистое число и есть та самая величина, на которую мы должны перевести стрелку, соответствующую частице, которая прыгает с одного места на другое. Например, если число равно 1, это значит один полный оборот, а если ½, то пол‑оборота, и т. д. В символической форме точная величина, на которую мы должны перевести стрелку часов для расчета вероятности прыжка частицы на расстояние x за время t, равна mx ² / (2 ht).

Заметьте: в формуле появляется дробь ½. Вы можете либо принять на веру, что она необходима для достижения соответствия экспериментальным данным, либо заметить, что она возникает из самого определения действия[12]. Оба варианта прекрасно подойдут. Сейчас, когда мы знаем значение постоянной Планка, можно точно вычислить величину поворота стрелки часов и коснуться вопроса, который чуть раньше оставили без ответа. А именно: что такое прыжок на расстояние «10»?

Посмотрим, что наша теория говорит о маленьком по повседневным нормам объекте – о песчинке. Теория квантовой механики, которую мы разработали, предполагает, что, если поместить песчинку в какую‑то точку, позднее она может оказаться в любом другом месте Вселенной. Но очевидно, что с настоящими песчинками так не происходит. Мы уже видели способ выхода из этой потенциальной проблемы, потому что если интерференция между циферблатами, соответствующими песчинке, перепрыгивающей из множества изначальных точек, достаточна, то при сложении циферблатов они все отменяют друг друга, и песчинка остается на месте.

Первый вопрос, на который нужно ответить, звучит так: сколько раз будут повернуты стрелки часов, если мы переместим частицу с массой песчинки на расстояние, например, 0,001 мм за одну секунду? Мы не сможем увидеть такое небольшое расстояние невооруженным глазом, но для атомного мира оно все еще велико. Вычислить это довольно просто самостоятельно, заменив числа в правиле хода часов Фейнмана[13]. Ответом будет где‑то триллион полных оборотов стрелки. Только представьте себе масштабы сопутствующей интерференции.

В результате песчинка остается на своем месте, и практически нет шансов, что она перепрыгнет на существенное расстояние, хотя для получения этого вывода мы реально учитывали возможность того, что она может тайно выпрыгнуть куда‑то в другую точку Вселенной.

И этот результат очень важен. Если вы сами подставили числа в формулу, то уже понимаете, почему это так: дело в ничтожной величине постоянной Планка. Если записать ее полностью, получится 0,000 000 000 000 000 000 000 000 000 000 000 662 6 кг·м²/с.

Если разделить почти любое привычное нам число на это, получится множество оборотов стрелок и огромная интерференция, так что все экзотические перемещения нашей песчинки по Вселенной отменят друг друга, и эту путешественницу через пространство мы будем воспринимать лишь как скучную пылинку, неподвижно лежащую на пляже.

Мы, разумеется, особенно интересуемся теми случаями, когда циферблаты не отменяют друг друга. Как мы уже видели, это происходит, если стрелка проходит не более одного оборота. В этом случае неконтролируемой интерференции не будет. Посмотрим, что это значит с количественной точки зрения.

Возвращаемся к группе циферблатов, заново нарисовав ее на рис. 4.4, но на этот раз вместо работы с точными числами будем рассуждать более абстрактно. Предположим, что область, в которой расположена группа циферблатов, имеет размер Δx, а расстояние до ближайшей точки области от точки Х равно x. В этом случае размер области Δx соответствует неопределенности нашего знания о начальном положении частицы; она стартует откуда‑то из области размера Δx. Начиная с точки 1, которая находится в исходной области и ближе всего к точке Х, мы должны поворачивать часы соответственно прыжку из этой точки в точку Х на величину

 

Рис. 4.4. Он изображает то же самое, что и рис. 4.3, с тем исключением, что нет ограничения конкретной величиной размера группы циферблатов или расстоянием до точки X

 

Теперь перейдем к самой удаленной точке – точке 3. Когда мы переносим циферблат из этой точки в точку Х, стрелка поворачивается на большую величину, а именно

 

 

Теперь мы можем точно сформулировать условие, при котором циферблаты, прибывающие в точку Х из всех точек исходного поля, не аннулировали бы друг друга: разница между циферблатами, прибывшими из точек 1 и 3, должна быть меньше одного полного оборота, то есть

 

 

W 3− W 1 < один оборот.

 

Если записать это полностью, мы получим

 

 

Рассмотрим конкретный случай, в котором размер области Δx будет много меньше расстояния x. Это значит, что мы исследуем условия, при которых частица совершит скачок значительно больший, чем диаметр ее исходной области. В этом случае условие, при котором циферблаты не отменяют друг друга, выводится непосредственно из предыдущего неравенства и выглядит как

 

 

Если вы немного знаете математику, то поймете, как это получается – с помощью перемножения членов в скобках и пренебрежения той частью, которая включает в себя (Δx) ². Это можно сделать, потому что по условиям Δx по сравнению с x – величина очень малая, а малая величина в квадрате – это очень малая величина.

Это уравнение заключает в себе условие, при котором циферблаты в точке Х не отменяют друг друга. Мы знаем, что если циферблаты не аннулируются взаимно в определенной точке, то существуют хорошие шансы обнаружить в этой точке частицу. Итак, мы выяснили, что если частица изначально расположена внутри области размером Δx, то через время t существуют хорошие шансы найти ее на значительном расстоянии x от поля, если неравенство выше будет выполнено. Более того, это расстояние увеличивается со временем, потому что в формуле мы на время t делим. Иными словами, чем больше времени проходит, тем выше вероятность нахождения частицы довольно далеко от ее исходного положения. Тут мы начинаем подозревать, что частица все‑таки двигается. Заметьте также, что шансы нахождения частицы вдалеке от исходной точки увеличиваются, если Δx уменьшается – то есть если неопределенность исходного положения частицы становится меньше. Иными словами, чем более точно мы улавливаем частицу, тем быстрее она удаляется от исходного положения. Теперь это уже очень напоминает принцип неопределенности Гейзенберга.

Напоследок давайте немного переформулируем наше неравенство. Заметьте: чтобы частица проделала путь из любой точки исходной области до точки Х за время t, она должна пройти расстояние x. Если вы действительно зарегистрировали частицу в точке X, то, разумеется, пришли к выводу, что частица передвигалась со скоростью x / t. Кроме того, напомним, что масса, умноженная на скорость частицы, есть ее импульс, поэтому величина mx / t – это измеренный нами импульс частицы. Теперь можно продвинуться еще дальше и вновь упростить неравенство, записав

 

 

где p – импульс. Можно переформулировать уравнение так, что оно примет вид

 

 

pΔx < h,

 

и это действительно заслуживает дальнейшего обсуждения, потому что данное уравнение уже очень сильно напоминает принцип неопределенности Гейзенберга.

Итак, наши математические расчеты пока окончены, и, если вы не очень пристально следили за ними, вам следует ухватить нить рассуждений с этого момента.

Если начать с частицы, находящейся внутри связной области размером Δx, то, как мы установили, с течением времени она может оказаться где угодно внутри более крупной области размером x.

Эта ситуация показана на рис. 4.5. Точнее говоря, это значит, что, если бы мы искали частицу в начальный момент, были бы шансы найти ее где‑то во внутренней области. Если бы мы не стали проводить измерения, а решили подождать, высоки были бы шансы найти ее где‑то во внешней, более крупной связной области. Это значит, что частица могла перейти из точки внутри малой начальной области в точку внутри более крупной. Однако она не обязана была двигаться, так что до сих пор есть вероятность нахождения ее в меньшей области Δx. Но вполне возможно, что измерения покажут, что частица дошла как раз до края большой области[14]. Если бы этот предельный случай был реализован при измерении, то мы заключили бы, что частица движется с импульсом, который задается только что выведенным нами уравнением (если вы не следовали за нашими математическими рассуждениями, просто примите это на веру), то есть p = h / Δx.

 

Рис. 4.5. Небольшая область со временем растет, в то время как изначально локализованная там частица с течением времени делокализуется

 

Теперь можем опять начать сначала и вернуть все в исходное положение. Частица опять окажется в малой области размера Δx. После измерения мы, вероятно, найдем частицу в какой‑то другой точке внутри более крупной области, до границы, и таким образом придем к выводу, что ее импульс меньше предельного значения.

Если мы представим, что вновь и вновь повторяем этот эксперимент, измеряя импульс частицы, которая первоначально находится внутри небольшой области размером Δx, мы обычно будем получать при измерении множество значений p где‑то между нулем и предельным значением h / Δx. Фраза «если проделать этот эксперимент несколько раз, то можно предсказать, что измеренный импульс окажется в пределах между нулем и h / Δx» значит, что «импульс частицы имеет неопределенность h / Δx». Как и в случае с неопределенностью положения, физики ввели для неопределенности этого рода символ Δp и пишут, что ΔpΔx ~ h. Значок ~ обозначает, что произведение неопределенностей положения и импульса примерно равно постоянной Планка – оно может быть или немного больше, или немного меньше. Немного углубившись в математику, можно сделать это уравнение еще более точным. Результат будет зависеть от подробностей расположения первоначальной группы циферблатов, но не стоит тратить на него слишком много сил и времени, потому что уже сделанного достаточно, чтобы понять основные идеи.

Утверждение, что неопределенность положения частицы, умноженная на неопределенность ее импульса (приблизительно), равна постоянной Планка – возможно, самая известная формулировка принципа неопределенности Гейзенберга. Эта формулировка гласит: если мы знаем, что частица находится в какой‑то исходный момент времени в какой‑то области, то измерение положения частицы в какой‑то более поздний момент времени покажет, что частица движется с импульсом, значение которого нельзя предсказать точнее, чем «нечто между нулем и h / Δx». Иными словами, если мы будем все больше и больше сужать начальную область нахождения частицы, она будет стремиться отпрыгнуть от этой области все дальше. Это настолько важно, что заслуживает третьего варианта формулировки: чем точнее вы знаете положение частицы в какой‑то момент, тем хуже будете знать скорость ее движения и, соответственно, ту точку, в которой она окажется позже.

Эта формулировка принципа неопределенности как раз и принадлежит Гейзенбергу. Она лежит в основе квантовой теории, но тут мы должны четко заявить, что сам по себе принцип вовсе не является неопределенным. Это утверждение о нашей неспособности точного отслеживания частицы, и здесь не больше места для квантового волшебства, чем в ньютоновой физике. На последних нескольких страницах мы вывели принцип неопределенности Гейзенберга из фундаментальных правил квантовой физики, которые соответствуют правилам хода часов, сложения и вычитания циферблатов. И действительно, его происхождение кроется в нашем допущении, что частица через мгновение после измерения ее положения может оказаться в любом другом месте Вселенной. Диковатость нашего первого предположения, что частица может оказаться в совершенно произвольном месте Вселенной, была приручена с помощью неконтролируемой квантовой интерференции, и принцип неопределенности – это в каком‑то смысле все, что осталось от исходной анархии.

Прежде чем двинуться дальше, мы должны сказать еще нечто очень важное об интерпретации принципа неопределенности. Не следует впадать в заблуждение, думая, что частица находится в каком‑то конкретном единственном месте и что распространение исходных циферблатов отражает лишь ограниченность нашего понимания. Если мы считаем, что не можем правильно вывести принцип неопределенности, потому что не можем признать необходимость рассматривать все циферблаты из всех точек внутри исходной области, можно перемещать их по очереди в отдаленную точку Х и потом складывать. Именно делая это, мы и получили наш результат, то есть нам пришлось предположить, что частица прибывает в Х через суперпозицию многих возможных маршрутов.

Принципом Гейзенберга мы чуть позже воспользуемся для иллюстрации некоторых примеров из реального мира. Сейчас же достаточно и того, что нам удалось вывести один из ключевых результатов квантовой теории, не пользуясь ничем другим, кроме простых манипуляций с воображаемыми циферблатами.

Подставим в уравнения несколько цифр, чтобы добиться лучшего понимания предмета. Сколько нужно ждать возникновения существенной вероятности, что песчинка выпрыгнет из спичечного коробка? Предположим, что спичечный коробок имеет стенки длиной 3 см, а песчинка весит 1 мкг. Напомним, что условие для появления существенной вероятности перемещения песчинки на заданное расстояние определяется неравенством

 

 

где Δx – размер коробка. Теперь подсчитаем, каким должно быть время t, если мы хотим, чтобы песчинка покрыла расстояние x = 4 см, что уверенно превосходит размеры спичечного коробка. С помощью очень несложной алгебры находим, что

 

 

после чего подставляем числа и обнаруживаем, что t должно быть больше, чем примерно 1021 секунд. Это около 6 × 1013 лет, то есть в 1000 раз больше возраста Вселенной. Так что, вероятно, этого не случится. Квантовая механика – странная штука, но не настолько странная, чтобы песчинка сама по себе выпрыгивала из спичечного коробка.

Завершая эту главу и переходя к следующей, сделаем еще одно, последнее наблюдение. Наш вывод принципа неопределенности основывался на конфигурации часов, показанной на рис. 4.4. Если говорить точнее, то мы установили исходную группу часов так, чтобы все стрелки были одинаковой длины и показывали одно и то же время. Это соответствует частице, находящейся в начальном состоянии покоя в определенной области пространства, – как, например, песчинка в спичечной коробке. Хотя мы выяснили, что частица, скорее всего, не будет пребывать в покое, мы также обнаружили, что для больших объектов – а для квантового мира песчинка действительно очень велика – это движение совершенно незаметно. Таким образом, какое‑то движение в нашей теории есть, но это движение неощутимо для достаточно больших объектов. Похоже, мы упускаем из виду что‑то важное, потому что крупные предметы на самом‑то деле движутся, а квантовая теория, как мы помним, – это теория и малых, и больших объектов. Теперь мы должны обратиться к новой проблеме: как объяснить движение?

 

 

Движение как иллюзия

 

В предыдущей главе мы вывели принцип неопределенности Гейзенберга из размышлений над определенным исходным расположением циферблатов в небольшой области. Часы имели стрелки одинакового размера, указывавшие в одинаковом направлении. Мы выяснили, что это отображает частицу, которая находится в относительно стационарном состоянии, хотя квантовые законы предполагают, что она все же совершает некие перемещения. Сейчас мы зададим другую первоначальную конфигурацию, чтобы описать частицу в движении.

На рис. 5.1 новое сочетание циферблатов. Это по‑прежнему группа циферблатов, соответствующая частице, первоначально расположенной вблизи от них. Стрелка в положении 1 указывает на 12, как и ранее, но все остальные стрелки в поле повернуты и показывают другое время. На этот раз мы нарисовали пять часов просто потому, что так рассуждения будут более наглядными, хотя мы по‑прежнему должны представить циферблаты и между точками, где размещаются те, что мы нарисовали: по одному циферблату для каждой точки в области. Применим, как и ранее, правило квантовой теории и переместим эти циферблаты в точку Х, находящуюся далеко от исходной группы, чтобы вновь описать то множество траекторий, по которым частица может переместиться из этой группы в точку Х.

 

Рис. 5.1. Исходная группа (которую иллюстрируют циферблаты 1–5) состоит из часов, показывающих разное время – стрелки каждых последующих сдвинуты на три часа вперед по отношению к предыдущим. Нижняя часть рисунка демонстрирует, как отличается время на часах по всей группе

 

Повторим уже ставшую, надеемся, стандартной процедуру: возьмем циферблат из точки 1 и переместим в точку Х, поворачивая стрелку в процессе этого перемещения. Она повернется на величину

 

 

Теперь возьмем циферблат из точки 2 и переместим в точку Х. Расстояние будет немного больше – допустим, что больше на d, и потребуется чуть больше повернуть стрелку:

 

 

Именно это мы и делали в предыдущей главе, но, возможно, вы уже заметили, что для новой начальной конфигурации циферблатов результат будет не совсем тем же, что в прошлый раз. Новая установка стрелок отличается тем, что циферблат 2 изначально показывает время на три часа вперед по сравнению с циферблатом 1:3 часа, а не 12. Но при переносе циферблата 2 в точку Х мы должны повернуть стрелку назад чуть больше, чем на циферблате 1, в соответствии с тем дополнительным расстоянием d, которое он должен покрыть. Если построить исходную ситуацию так, что начальное опережение показаний циферблата 2 будет точно таким же, как дополнительный поворот стрелки в процессе движения в точку Х, то циферблат 2 прибудет в точку Х, показывая точно такое же время, как циферблат 1. Это будет означать, что произойдет не отмена, а суммирование циферблатов и создастся новый циферблат бо́льших размеров, что, в свою очередь, означает наличие высокой вероятности нахождения частицы в точке Х. Это совершенно не похоже на ту неконтролируемую квантовую интерференцию, случившуюся, когда все наши циферблаты показывали одинаковое время. Сейчас рассмотрим циферблат 3, который мы повернули на 6 часов вперед по сравнению с циферблатом 1. Этот циферблат должен пройти дополнительное расстояние 2 d до точки Х, и снова из‑за смещения стрелки этот циферблат в точке прибытия будет показывать 12 часов. Если задать все смещения стрелок подобным образом, то же самое будет происходить по всей группе, так что все циферблаты в точке Х будут суммироваться.

Это значит, что вероятность нахождения частицы в точке Х в какое‑то более позднее время будет достаточно высокой. Точка Х отличается от других, потому что именно в ней все циферблаты из исходной группы, словно сговорившись, покажут одно и то же время. Но точка Х – не единственная из имеющих особенный характер: все точки слева от Х на расстоянии, равном размеру исходной группы, обладают тем же свойством: циферблаты в них тоже складываются с положительным результатом. Чтобы увидеть это, заметьте, что можно взять циферблат 2 и переместить его в точку на расстоянии d слева от Х. Это будет соответствовать перемещению циферблата на расстояние x, а это то же самое расстояние, на которое мы переместили циферблат 1 по направлению к точке Х. После этого можно переместить циферблат 3 в эту новую точку на расстояние x + d, что будет тем же самым расстоянием, на которое мы до того переместили циферблат 2. Эти два циферблата, следовательно, тоже должны показывать одно и то же время в точке прибытия и суммироваться. Мы можем продолжать делать то же самое для всех циферблатов в исходной группе, но только до тех пор, пока расстояние слева от Х не станет равно размеру исходной группы. За пределами этой особой области циферблаты в основном будут отменять друг друга, потому что останутся без защиты от обычной неконтролируемой квантовой интерференции[15].

Истолкование этого эксперимента очевидно: группа циферблатов движется, как показывает рис. 5.2.

 

Рис. 5.2. Группа циферблатов с постоянной скоростью движется вправо. Это происходит потому, что в исходной группе стрелки циферблатов повернуты по отношению друг к другу так, как описано в тексте

 

Это удивительный результат. Задав начальную группу с помощью часов, показывающих разное, а не одинаковое время, мы пришли к описанию движущейся частицы. Интересно, что мы можем установить очень важную связь между часами со сдвинутыми стрелками и поведением волн.

Помните, что в главе 2 нам пришлось ввести идею циферблатов, чтобы объяснить волновое поведение частиц в двухщелевом эксперименте. Вернемся к рис. 3.3, где мы изобразили набор циферблатов, описывающий волну. Он напоминает набор циферблатов в нашей движущейся группе. Соответствующую волну мы изобразили под группой циферблатов на рис. 5.1, пользуясь совершенно теми же методами, что и ранее: 12 часов – пик волны, 6 часов – ее минимум, а 3 и 9 часов соответствуют нулевой высоте волны.

Как мы могли предвидеть, представление движущейся частицы, видимо, имеет что‑то общее с волной. У волны есть длина, соответствующая расстоянию между циферблатами с идентичными показаниями стрелок. Мы изобразили ее на рисунке, обозначив буквой λ.

Сейчас можно вычислить, насколько далеко точка Х должна располагаться от исходной группы, чтобы смежные циферблаты складывались с положительным значением. Это приводит нас к еще одному очень важному результату в квантовой механике и существенно проясняет связь между квантовыми частицами и волнами. Снова наступает момент, когда нам потребуется немного математики.

В первую очередь нужно вывести дополнительную величину, на которую повернута стрелка циферблата 2 по сравнению с циферблатом 1, поскольку дальше циферблат отправится в точку Х. С помощью результатов из начала главы находим, что

 

 

Вы можете сами произвести вычисления, раскрыв скобки и отбросив величину d ², поскольку d – расстояние между циферблатами, которое слишком мало по сравнению с x – расстоянием до точки Х, лежащей очень далеко от исходной области.

Довольно несложно записать критерий и для циферблатов, показывающих одно и то же время; нам нужно еще немного подвести стрелки, чтобы при продвижении циферблата 2 это исходное смещение показаний часов полностью компенсировало дополнительный поворот стрелки в ходе перемещения циферблата. Для примера, показанного на рис. 5.1, циферблат 2 дополнительно переводится на ¼, потому что мы должны будем повернуть стрелку на четверть часа вперед. Точно так же циферблат 3 подводится на ½, потому что мы должны будем повернуть стрелку вперед на полчаса. Символически выразить долю полного оборота в виде d / λ, где d – расстояние между циферблатами, а λ – длина волны.

Если вы этого пока не улавливаете, рассмотрите случай, при котором расстояние между двумя циферблатами будет равняться длине волны. Тогда d = λ, а, следовательно, d / λ = 1, что соответствует одному полному обороту, при этом оба циферблата покажут одинаковое время.

Подытожим: чтобы два соседних циферблата показывали в точке Х одинаковое время, требуется, чтобы дополнительный поворот часовой стрелки в начальном положении равнялся дополнительному повороту часовой стрелки при распространении волны на расстояние:

 

 

Как и выше, можем упростить это выражение, отметив, что mx / t – это импульс частицы, p. После небольших преобразований уравнения получим:

 

 

Полученный результат настолько важен, что заслуживает собственного имени. И действительно, эта формула называется уравнением де Бройля, поскольку впервые в сентябре 1923 года ее предложил французский физик Луи де Бройль. Важность формулы в том, что она связывает длину волны с известным импульсом частицы. Иными словами, так проявляется тесная связь между свойством, обычно присутствующим у частиц – импульсом, и свойством, чаще всего ассоциирующимся с волнами, – длиной волны. Таким образом, из наших манипуляций с часами возник корпускулярно‑волновой дуализм квантовой механики.

Уравнение де Бройля ознаменовало огромный концептуальный скачок. В своей оригинальной работе он писал, что «воображаемая связанная волна» должна приписываться всем частицам, в том числе электронам, и что поток электронов, проходя через щель, «должен демонстрировать феномен дифракции»[16]. В 1923 году это были еще теоретические рассуждения, потому что Дэвиссон и Джермер обнаружили появление интерференционной фигуры при испускании пучков электронов только в 1927‑м. Эйнштейн сделал примерно то же предположение, что и де Бройль, на других основаниях и приблизительно в это же время. Эти два теоретических результата стали катализатором для развития волновой механики Шрёдингера. В работе, вслед за которой Шрёдингер уже опубликовал уравнение своего имени, он писал: «Нам приходится серьезно отнестись к волновой теории де Бройля – Эйнштейна о движении частиц».

Мы можем подробнее разобраться с уравнением де Бройля и посмотреть, что произойдет, если уменьшить длину волны, что будет соответствовать большему смещению часовой стрелки соседних циферблатов. Иными словами, сократим расстояние между циферблатами, показывающими одно и то же время. Это значит, что нужно увеличить расстояние x, чтoбы компенсировать сокращение λ, – то есть для погашения дополнительной подкрутки стрелок точка Х должна оказаться дальше. Это соответствует более быстрому движению частицы: чем меньше длина волны, тем больше импульс, о чем и говорит уравнение де Бройля. Отличный результат: нам удалось «вывести» обычное движение (потому что со временем группа циферблатов движется равномерно), начав со статичного ряда циферблатов.

 

Волновые пакеты

 

Теперь вернемся к важному вопросу, который до того мы в этой главе пропустили. Мы сказали, что исходная группа целиком движется к окрестностям точки Х, но лишь примерно сохраняет свою исходную конфигурацию.

Что мы имеем в виду под этим довольно туманным утверждением? Ответ снова связан с принципом неопределенности Гейзенберга и приводит нас к следующему открытию. Мы описывали происходящее с группой циферблатов, которая служит отображением частицы, находящейся где‑то в малой области пространства. Эта область представлена на рис. 5.1 пятью циферблатами. Подобная группа называется волновым пакетом. Но мы уже видели, что локализация частицы в какой‑то области пространства имеет свои последствия. Мы не можем воспрепятствовать тому, что локализованная частица получит «удар Гейзенберга» (то есть импульс ее будет неизвестен как раз ввиду ее локализации), и со временем это приведет к тому, что частица «просочится» за пределы области своего исходного расположения.

Этот эффект имеет место в случае, когда все циферблаты показывают одинаковое время; присутствует он и в случае перемещения группы циферблатов. Это приведет к такому распространению волнового пакета по мере движения, которое соответствует стационарному движению одиночной частицы.

Если подождать достаточно долго, то волновой пакет, которому соответствует движущаяся группа часов, полностью распадется, и мы потеряем все шансы на предсказание точного положения частицы. Это, разумеется, будет иметь место при любых попытках измерения скорости нашей частицы. Посмотрим, как это работает.

Хороший способ измерить скорость частицы – провести два измерения ее положения в два разных момента времени. После этого мы можем вывести ее скорость, разделив пройденное ею расстояние на время между двумя измерениями. Учитывая то, что мы сказали, это кажется опасным, потому что, если мы слишком точно измерим положение частицы, можем сжать весь волновой пакет, что изменит его последующее движение. Если же мы не хотим, чтобы частица получила значительный «удар Гейзенберга» (то есть существенный импульс, потому что Δx становится слишком малым), то должны убедиться, что наши измерения положения будут достаточно расплывчатыми. Конечно, слово «расплывчатый» слишком расплывчато, так что давайте его как‑то определим. Если воспользоваться детектором частиц, способным определять частицы с точностью 1 мкм, а наш волновой пакет имеет ширину 1 нм, то детектор не окажет почти никакого воздействия на эту частицу. Экспериментатор, получающий данные с детектора, был бы счастлив иметь разрешение в 1 микрон, но с точки зрения электрона все, что может детектор, – это сообщить экспериментатору, что частица находится в некоем огромном ящике, который в тысячу раз больше, чем существующий волновой пакет. В этом случае «удар Гейзенберга», вызванный процессом измерений, будет очень мал по сравнению с тем, который порождается конечным размером самого волнового пакета. Вот что мы имеем в виду под словами «достаточно расплывчатый».

Мы рисовали эту ситуацию на рис. 5.3, обозначив исходную ширину волнового пакета d и разрешение нашего детектора Δ.

 

Рис. 5.3. Волновой пакет в два разных момента времени. Пакет двигается вправо и распространяется с течением времени. Пакет движется, потому что стрелки часов, которые его составляют, смещены относительно друг друга (де Бройль), и распространяется в соответствии с принципом неопределенности. Форма волнового пакета не так важна, но для полноты картины следует сказать, что если пакет большой, то циферблаты будут большими, а если пакет маленький, то небольшими будут и циферблаты

 

Мы изобразили также волновой пакет в более позднее время: он стал немного шире и имеет ширину d', которая больше, чем d. Максимум волнового пакета проходит расстояние L за временной интервал t со скоростью v. Приносим извинения, если эта формула навеяла вам давно забытые школьные дни, бездарно просиженные за исчерканной и покореженной деревянной партой, и голос учителя физики, теряющийся в полумраке зимнего дня и вгоняющий в совершенно неуместную дремоту. Мы покрываемся тут меловой пылью по серьезной причине и надеемся, что заключение этой главы вернет вас в сознание эффективнее, чем летающая тряпка для вытирания доски в детстве.

Снова оказавшись в нашей метафорической научной лаборатории, мы пытаемся измерить скорость v волнового пакета, выполнив два измерения его положения в два разных мгновения. Это даст нам расстояние L, которое волновой пакет покрыл за время t. Но разрешение нашего детектора равно Δ, так что мы не сможем точно вычислить L. В символической форме можно записать, что измеренная скорость равна

 

 

где знак плюс‑минус просто напоминает, что если мы проводим два измерения положения, то получаем обычно не L, а скорее «L плюс чуть‑чуть» или «L минус чуть‑чуть», где «чуть‑чуть» получается благодаря тому, что мы согласились не измерять положение частицы слишком точно. Важно принять во внимание, что L мы в действительности измерить не можем: мы всегда получаем значение где‑то в диапазоне L ± Δ. Помните также, что величина Δ должна быть гораздо больше, чем размер волнового пакета, иначе частица сожмется и разрушит его. Немного перепишем последнее уравнение, чтобы лучше понять, что происходит:

 

 

Оказывается, что, если величина t будет очень большой, мы выполним измерение скорости v = L / t с весьма незначительной погрешностью, потому что можем ждать очень долго, добиться, чтобы t было сколь угодно большим, а Δ / t, соответственно, сколь угодно малым, притом что величина Δ продолжит оставаться достаточно великой. Поэтому кажется, что мы нашли отличный способ все же совершить точные вычисления скорости этой частицы, не вмешиваясь в ее ход: достаточно лишь долго подождать между первым и вторым измерениями. С точки зрения интуиции все прекрасно и логично. Представьте, что вы замеряете скорость автомобиля, движущегося по шоссе. Если замерите расстояние, которое он проедет за одну минуту, то вы, конечно, получите значительно более точный показатель его скорости, чем если интервал между измерениями составит одну секунду. Итак, мы обманули Гейзенберга?

Конечно, нет: мы забыли кое‑что учесть. Частица описывается волновым пакетом, который рассеивается с течением времени. При наличии достаточного времени рассеяние окончательно размоет волновой пакет, так что частица может оказаться где угодно. Это увеличит диапазон значений, которые мы получим при измерении L, и перекроет нам возможность совершать сколь угодно точное вычисление скорости частицы.

Имея дело с частицей, описываемой волновым пакетом, мы все равно ограничены принципом неопределенности. Так как изначально частица находится где‑то в области размером d, Гейзенберг информирует нас, что импульс частицы соответствующим образом искажается на величину h/d. Поэтому есть только один способ построения такой конфигурации циферблатов, чтобы представленная на ней частица двигалась с определенным импульсом, – нужно сделать d, то есть размер волнового пакета, очень большим. И чем больше он будет, тем меньше окажется неопределенность импульса частицы. Урок ясен: частица с хорошо известным импульсом описывается большой группой циферблатов[17]. Точнее говоря, частица с совершенно точно известным импульсом будет описана бесконечно длинной группой циферблатов, что означает бесконечно длинный волновой пакет.

Мы только что показали, что волновому пакету конечного размера не соответствует частица с определенным импульсом. Это значит, что, если измерить импульс очень большого количества частиц, которые описываются одним и те

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...