Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Функционирование ландшафта




Лекция №6 Структура и функционирование ландшафта

Структура ландшафта

Понятие структуры ландшафта имеет три аспекта, соответствующие трем этапам развития и усложнения этого понятия. Первоначальное представление сводилось к тому, что под структурой понималось взаимное расположение составных частей. В том представлении заключен лишь чисто пространственный аспект структуры. При дальнейшем развитии понятия возник его функциональный аспект, который требует обращать внимание на способы соединения частей системы, т.е. на внутренние системообразующие связи. Однако представление о структуре ландшафта осталось статичным, пока не появился третий, динамический, или временной, аспект, т.е. структура ландшафта стала рассматриваться не только как некоторая организованность его составных частей в пространстве, но и как упорядочность смены его состояний во времени.

Таким образом, для познания структуры ландшафта следует в первую очередь четко определить все его составные части, а затем изучить «механизм» их взаимосвязей, не забывая при этом о динамическом подходе. Если представить структурную модель ландшафта в виде графа, то вершины последнего будут соответствовать структурным частям, а ребра- связям между ними.

Структурная модель ландшафта существенно отличается от модели фации своей многоплановостью, или полисистемностью (по выражению В.С.Преображенского). Структурными элементами фации служат ее географические компоненты, а пространственная упорядочность структуры (мы пока не будем касаться динамического аспекта) выражается в закономерном расположении компонентов по вертикали и существовании между ними вертикальных же потоков вещества и энергии. Изучение горизонтальной (плановой) внутрифациональной структуры, вообще говоря, не относится к задачам ландшафтоведения и географии.

В ландшафте различают две системы внутренних связей – вертикальные и горизонтальные (латеральные), причем межкомпонентные (вертикальные) связи как бы опосредованы через латеральную структуру ландшафта, через сопряжение входящих в него элементарных геосистем. Локальные геосистемы разных порядков служат элементами латеральной структуры ландшафта, его блоками или субсистемами. Следовательно, латеральная, или горизонтальная, структура ландшафта – это то же, что морфологическая структура.

Что касается вертикальной структуры ландшафта, то ее составными частями обычно принято считать отдельные географические компоненты – твердый фундамент, почву, биоту, и т. д. Поскольку своими предельными (однородными) пространственными подразделениями они представлены в составе фации, ландшафт выступает как некоторая сложная интегральная система элементарных вертикальных структур. Однако если говорить о функциональном подходе к структуре, то анализ межкомпонентных связей не есть единственно возможный путь.

Во - первых, далеко не всегда достаточно рассматривать каждый компонент как единое и неделимое целое, и в анализ приходится вовлекать определенные части, или элементы, компонентов которые по отношению к геосистеме представляют структурно-функциональные подразделения второго порядка. Так, для понимания роли биоты в ландшафтном «механизме», в системе географических связей, важно различать три функционально разнокачественные (трофические) группы фрагментов – продуценты, консументы и редуценты. Далее рассматривая функционирование в ландшафте основной, наиболее активной части биоты, представленной зелеными растениями, важно вычленить из нее всю совокупность ассимилирующих органов, а также подземную часть (корни) и массу транспортно-скелетных органов. Специфическую роль в ландшафтной структуре играет мертвое вещество, сосредоточенное в подстилке, хотя в традиционном перечне географических компонентов подстилка отсутствует и обычно присоединяется к почве на правах ее нулевого горизонта.

Во - вторых, компоненты в общепринятом значении этого слова, строго говоря, не вполне соответствуют составным частям вертикальной структуры ландшафта, которые должны иметь упорядоченное расположение в вертикальном профиле геосистемы в виде ярусов, или горизонтов. Поэтому предпринимались попытки расчленить геосистему по вертикали на особые структурные части - «хорогоризонты», или «геогоризонты».

Согласно Н.Л. Беручашвили, элементарными структурно-фунциональными частями ПТК служат так называемые геомассы - качественно разнородные тела, характеризующиеся определенной массой, специфическим функциональным назначением, а также скоростью измерения во времени и (или) скоростью перемещения в пространстве, таковы аэромассы, фитомассы, зоомассы, мортмассы (массы мертвого органического вещества), литомассы, ледомассы, гидромассы. Геомассы отличаются от компонентов большей вещественной однородностью. Например, под недомассой подразумевается не почва, а только почвенный мелкозем вместе с гумусом, т.е. органоминеральная смесь, куда не входят почвенная влага, почвенный воздух, скелетная часть почвы, корни растений и почвенные животные. Под аэромассой имеется в виду «сухой воздух», т.е. смесь атмосферных газов без водяного пара и других примесей. Таким образом, компонент геосистемы в обычном понимании - это более сложное образование, чем геомасса; в нем присутствует элементы всех геомасс, но одна из них преобладает, служит его основным субстратом.

Однородные слои в пределах вертикального профиля ПТК, характеризующиеся специфическими наборами и соотношениями геомасс, Н.Л. Беручашвили называет геогоризонтами. Основные из них: аэрогоризонт, аэрофитогоризонт (приземной слой атмосферы, пронизанный растениями), мортаэрогоризонт (с растительной ветошью), снежный горизонт, ледогоризонт, лито горизонт. Каждый из них может быть подразделен в зависимости от количественного соотношения геомасс на горизонты второго порядка (например, в аэрофитогоризонте – горизонты с кронами, транспортно-скелетными органами, травяным ярусом, моховым покровом; в ледогоризонте - с разным содержанием почвенной влаги и корней).

Надо заметить, что понятия «геомассы» и «геогоризонты» разработаны применительно к элементарной геосистеме-фации и, следовательно, к изучению первичных вертикальных связей в ландшафте. Поскольку геомассы и геогоризонты специфичны для разных фаций, установить их единую систему для ландшафта как целого практически невозможно, и поэтому традиционные компоненты сохраняют более универсальное значение при структурно-функциональном изучении геосистем разных уровней.

Состав и взаимное расположение частей – важные элементы понятия о структуре ландшафта, но сами по себе они еще не объясняют способа соединения частей т.е. того, что составляет главное в представлении о структуре. Между геосистемами и между их блоками существует крайне многообразные связи, которые можно классифицировать по их физической природе, направленности, значимости, тесноте, устойчивости и другим признакам. Первооснову этих связей составляет обмен энергией, веществом, а также информацией. Геосистемы пронизаны вещественно-энергетическим потоками разного происхождения и разной мощности. Следует различать потоки внешние (входные и выходные) и внутренние. Считается, что собственно системообразующие значение имеет внутренние потоки (т.е. потоки между блоками системы), которые по своей интенсивности намного превосходят внешние. Как уже отмечалось, известны два типа внутренних связей (потоков)- вертикальные и горизонтальные, последние играют организующую роль в интеграции простых геосистем в более сложные (геохоры).

Связи между частями системы могут быть односторонними и двусторонними, прямыми и обратными. При этом, по-видимому, помимо обмена веществом и энергией особую роль играют сигнальные формы связи, пока еще недостаточно изученные. Как известно, обратные связи бывают положительными и отрицательными.

При положительной обратной связи процесс, вызванный действием того или иного фактора, сам себя усиливает. Примером может служить образование лавин (отсюда название – лавинообразное усиление процесса). При отрицательной обратной связи начавшийся процесс сам себя гасит. Так оледенение возникает в результате воздействия климата при определенных гидротермических условиях, но ледниковый покров создает антициклон, ведущий к уменьшению осадков, питания ледника и его дальнейшего развития. Аналогичные явления можно наблюдать в формировании и развитии озер, болот, оврагов. С отрицательными обратными связями связана способность геосистем к саморегулированию. Таким образом, существо взаимосвязей в ландшафте не исчерпывается простой передачей вещества или энергии между компонентами или подчиненными геосистемами топологического уровня; вещественно-энергетические потоки подвергаются преобразованию (трансформации), входные воздействия вызывают различные ответные реакции в каждом блоке геосистемы, при этом последняя приобретает новые качества.

Совокупность процессов перемещения, обмена и трансформации вещества и энергии в геосистеме мы назвали ее функционированием, функционирование ландшафта интегральный природный процесс (близкий смысл А.А. Григорьев вкладывал в понятие «единый физико-географический процесс»).

Функционирование ландшафта

Для познания структуры ландшафта следует в первую очередь четко определить все его составные части, а затем изучить "механизм" их взаимосвязей, памятуя при этом о динамическом подходе. В ландшафте различаются две системы внутренних связей - вертикальные и горизонтальные (латеральные), причем межкомпонентные (вертикальные) связи как бы опосредованы через латеральную структуру ландшафта, через сопряжение входящих в него элементарных геосистем. Совокупность процессов перемещения, обмена и трансформации вещества и энергии в геосистеме называется ее функционированием, функционирование ландшафта - интегральный (физико-географический по Григорьеву А.А.) процесс. Функционирование ландшафта слагается из множества элементарных процессов, имеющих физико-механическую, химическую или биологическую природу. Функционирование 1. Влагооборот 2. Биогенный оборот веществ 3. Абиотическая миграция вещества литосферы 4. Энергетика ландшафта 5. Годичный цикл

Влагооборот - важная составная часть механизма взаимодействия между компонентами геосистем и между самими гсосистемами, его можно определить как одно из главных функциональных звеньев ландшафта. Другим звеном является минеральный обмен, или геохимический круговорот. В совокупности влагооборот и минеральный обмен (вместе с газообменом) охватывают все вещественные потоки в геосистеме. Но перемещение, обмен и преобразование вещества сопровождаются поглощением, трансформацией и высвобождением энергии - массообмен тесно связан с энергообменом, который также следует рассматривать как особое функциональное звено ландшафта. Влагооборот в ландшафте Количественно влагооборот можно описать балансом влаги, т.е. равенством приходных, расходных составляющих влагооборота и изменения запасов. При составлении баланса влаги непременно нужно оговорить объем тела, для которого составляют баланс, указать временной интервал, для которого составляют баланс. Для общей характеристики влагооборота часто используют установившиеся среднемноголетние показатели, тогда изменение запасов влаги с начала и до конца года можно не учитывать. Если же баланс влаги составляют за лето, то обязательно учитывают запасы влаги на его начало и конец. Статьи водного баланса и его запасы измеряют для определенной территории в кубических метрах, иногда кубических километрах. Структура водного баланса зависит от степени открытости геосистемы, выраженности тех или иных составляющих влагооборота. Наиболее простая структура водного баланса всей планеты Земля, которая не обменивается водой с окружающей Вселенной. Среднемноголетний баланс в этом случае следующий: испарение с поверхности океанов и суши, составляющее 577 тыс. км3, равно атмосферным осадкам. С учетом площади поверхности Земли слои осадков и испарения равны и составляют 1130 мм. Отметим, что суммарные запасы всех вод на Земле, равные 1,4 млрд. км3, гораздо больше вовлеченных в круговорот. Из всех запасов (96,5 %) — это соленые воды океанов и морей. Запасов пресных вод на суше всего 35 млн. км3, из которых 2/3 сосредоточено в ледниках и снежном покрове Антарктиды и Арктики. К водному балансу суши помимо осадков и испарения добавляют еще одну статью — поверхностный и подземный сток в Мировой океан: осадки, испарение, сток. Для Мирового океана прибавляют приток с суши тогда баланс выглядит так: осадки, испарение, приток с суши. Структура водного баланса отдельных участков суши зависит от их широтного расположения и удаленности от океанов (степени континентальности). Помимо испарения используют понятие «испаряемость» — количество влаги, которое может испариться, исходя из тепловых ресурсов местности при неограниченном количестве осадков, идущих на увлажнение почвы. Орошение в засушливых районах существенно увеличивает испарение, доводя его до испаряемости. Помимо общего водного баланса территории для понимания природных процессов и решения важных практических задач необходимо составлять частные балансы для поверхностных, почвенных, подземных безнапорных и напорных вод. По частным балансам оценивают влагообмен между отдельными природными телами, что, например, нужно при описании передвижения зарязняющих веществ. Влага, выпадающая на поверхность суши, расходуется частично на увлажнение листьев и испаряется с них, не доходя до поверхности почвы. При сильных осадках или при таянии снега часть воды не успевает впитаться и стекает в реки, доля поверхностного стока на влажных территориях может превышать половину суммы осадков. Впитавшаяся влага в основном расходуется на транспирацию растениями, которые используют очень много воды для производства единицы фитомассы. Интенсивность влагооборота и его структура (соотношение отдельных составляющих) специфичны для разных ландшафтов и зависят, прежде всего, от энергообеспеченности и количества осадков, подчиняясь зональным и азональным закономерностям. Абсолютные величины внешнего влагообмена хорошо увязываются с общими зонально - азональными закономерностями циркуляции атмосферы: наиболее обильное поступление внешних осадков (и соответственно наиболее интенсивный вынос воды из ландшафта) наблюдается в экваториальных широтах, а также в муссонных тропиках и субтропиках, затем в приокеанических областях пояса западного воздушного переноса. Наиболее слабые входные и выходные потоки влаги свойственны внутриконтинентальным областям и особенно поясу тропической пассатной циркуляции. Обобщенным показателем внутриландшафтного влагооборота можно считать суммарное испарение. Рассмотреть круговорот веществ. Биогенный оборот веществ Биогеохимический цикл, или "малый биологический круговорот", - одно из главных звеньев функционирования геосистем. В основе его - продукционный процесс, т.е. образование органического вещества первичными продуцентами - зелеными растениями, которые извлекают двуокись углерода из атмосферы, зольные элементы и азот - с водными растворами из почвы. Важнейшие показатели биогенного звена функционирования - запасы фитомассы и величина годичной первичной продукции, а также количество опада и аккумулируемого мертвого органического вещества. Для оценки интенсивности круговорота используются производные показатели: отношение чистой первичной продукции к запасам фитомассы, отношение живой фитомассы к мертвому органическому веществу и др. Для характеристики вклада биоты в функционирование геосистем особенно важны биогеохимические показатели: количество элементов питания, потребляемых для создания первичной биологической продукции (емкость биологического круговорота) и их химический состав, возврат элементов с спадом и закрепление в истинном приросте, накопление в подстилке, потеря на выходе из геосистемы и степень компенсации на входе. Продуктивность биоты определяется как географическими факторами, так и биологическими особенностями различных видов. С величиной первичной биологической продуктивности непосредственно связана емкость биологического круговорота веществ. Хотя количество вовлекаемого в оборот минерального вещества зависит от биологических особенностей различных видов, размещение этих видов в значительной мере подчинено географическим закономерностям. По Л. Е. Родину, Н. И. Базилевич, полный цикл биологического круговорота элементов слагается из следующих составляющих. 1. Поглощение ассимилирующей поверхностью растений из атмосферы углерода, а корневыми системами из почвы - азота, зольных элементов и воды, закрепление их в телах растительных организмов, поступление в почву с отмершими растениями или их частями, разложение опада и высвобождение заключенных в них элементов. 2. Отчуждение частей растений питающимися ими животными, превращение их в телах животных в новые органические соединения и закрепление части из них в животных организмах, последующее поступление их в почву с экскрементами животных или с их трупами, разложение и тех и других и высвобождение заключенных в них элементов. 3. Газообмен между ассимилирующей поверхностью растений и атмосферой, между корневой системой и почвенным воздухом. 4. Прижизненные выделения надземными органами растений и в особенности корневыми системами некоторых элементов непосредственно в почву. Для познания круговорота веществ в рамках биогеоценоза наеобходимо охватывать исследованиями все группы организмов: растения, животных, микрофлору и микрофауну. Элементами биогеохимического круговорота веществ являются следующие составляющие. 1. Регулярно повторяющиеся или непрерывно текущие процессы притока энергии, образование и синтез новых соединений. 2. Постоянные или периодические процессы переноса или перераспределения энергии и процессы выноса и направленного перемещения синтезированных соединений под влиянием физических, химических и биологических агентов. 3. Направленные ритмические или периодические процессы последовательного преобразования: разложения, деструкции синтезированных ранее соединений под влиянием биогенных или абиогенных воздействий среды. 4. Постоянное или периодическое образование простейших минеральных и органоминеральных компонентов в газообразном, жидком или твердом состоянии, которые играют роль исходных компонентов для новых, очередных циклов круговорота веществ. Обязательными параметрами для изучения биогеохимических циклов в природе являются следующие показатели. 1. Биомасса и ее фактический прирост (фито -, зоо-, микробная масса отдельно). 2. Органический опад (количество, состав). 3. Органическое вещество почвы (гумус, неразложившиеся органические остатки). 4. Элементный вещественный состав почв, вод, воздуха, осадков, фракций биомассы. 5. Наземные и подземные запасы биогенной энергии. 6. Прижизненные метаболиты. 7. Число видов, численность, состав. 8. Продолжительность жизни видов, динамика и ритмика жизни популяций и почв. 9. Эколого-метеорологическая обстановка среды: фон и оценка вмешательства человека. 10. Охват точками наблюдений водораздела, склонов, террас, долин рек, озер. 11. Количество загрязнителей, их химические, физические, биологические свойства (особенно СО, СО2, SO2, P, NO3, NH3, Hg, Pb, Cd, H2S, углеводороды). Биологические циклы - обусловлены во всех звеньях жизнедеятельностью организмов (питание, пищевые свя-т. размножение, рост, передвижение метаболитов, смерть, разложение, минерализация). В природе протекают как биологические циклы веществ, так и абиогенные циклы. Абиотическая миграция вещества литосферы Абиотические потоки вещества в ландшафте в значительной мере подчинены воздействию силы тяжести и в основном осуществляют внешние связи ландшафта. Ландшафтно-географическая сущность абиотической миграции вещества литосферы состоит в том, что с нею осуществляется латеральный перенос материала между ландшафтами и между их морфологическими частями и безвозвратный вынос вещества в Мировой океан. Значительно меньше (в сравнении с биогенным обменом) участие абиотических потоков в системе внутренних (вертикальных, межкомпонентных) связей в ландшафте. Вещество литосферы мигрирует в ландшафте в двух основных формах: 1) в виде геохимически пассивных твердых продуктов денудации - обломочного материала, перемещаемого под действием силы тяжести вдоль склонов, механических примесей в воде (влекомые и взвешенные наносы) и воздухе (пыль); 2) в виде водорастворимых веществ, т.е. ионов, подверженных перемещению с водными потоками и участвующих в геохимических (и биохимических) реакциях. Энергетика ландшафта и интенсивность функционирования Функционирование геосистем сопровождается поглощением, преобразованием, накоплением и высвобождением энергии. Первичные потоки энергии поступают в ландшафт извне – из космоса и земных недр. Важнейший из них - лучистая энергия Солнца, поток которой по плотности многократно превышает все другие источники. Для функционирования ландшафта солнечная энергия наиболее эффективна; она способна превращаться в различные иные виды энергии - прежде всего в тепловую, а также в химическую и механическую. За счет солнечной энергии осуществляются внутренние обменные процессы в ландшафте, включая влагооборот и биохимический метаболизм, а кроме того, циркуляция воздушных масс и др. Можно сказать, что все вертикальные связи в ландшафте и многие горизонтальные, так или иначе, прямо или косвенно связаны с трансформацией солнечной энергии. Обеспеченность солнечной энергии определяет интенсивность функционирования ландшафтов (при равной влагообеспеченности) а сезонные колебания инсоляции обуславливают основной -годичный - цикл функционирования. Преобразование проходящей солнечной радиации начинает с отражения части ее от земной поверхности. Потери радиации на отражение широко колеблются в зависимости от характера поверхности ландшафта. Подавляющая часть полезного тепла, поглощаемого земной поверхностью, т.е. радиационного баланса, затрачивается на испарение и на турбулентную отдачу тепла в атмосферу, иными словами - на влагооборот и нагревание воздуха. На другие тепловые потоки в энергии может служить одним из показателей интенсивности функционирования ландшафта. Интенсивность функционирования ландшафта тем выше, чем интенсивнее в нем внутренний оборот вещества и энергии и связанная с ним созидающая функция, которая выражается, прежде всего, в биологической продуктивности. В свою очередь, все перечисленные процессы определяются соотношением теплообеспеченности и увлажнения. Годичный цикл функционирования ландшафта Функционирование геосистем имеет циклический характер и подчинено цикличности поступления солнечной энергии. Каждому компоненту присуща определенная инертность, т.е. большее или меньшее отставание ответных реакций на внешние (астрономические) причины внутригодовых изменений, в силу чего эти изменения не синхронны в отдельных процессах и явлениях. С инертностью компонентов связан эффект последействия, т.е. зависимость состояния геосистемы от характера предшествующих сезонных фаз. Цикличность процессов функционирования геосистемы сопровождается определенными изменениями ее вертикальной структуры. В умеренном поясе особенно четко различаются летний и зимний варианты этой структуры. Летний, ассимилирующий зеленый покров с более или менее сложной системой горизонтов (древесный полог, подлесок, травяной ярус и т.п.) зимой полностью или частично деградирован, но в это время года появляются снежный покров и мерзлотный почвенный слой.

Функционирование ландшафта слагается из множества элементарных процессов, имеющих физико- механическую, химическую или биологическую природу (например падение капель). Все географические процессы могут быть в конечном счете сведены к подобным элементарным составляющим, но это означало бы реакцию, не отвечающую задачам познания геосистемы как целого и привело бы к потере этого целого. Возможны разные подходы к географическому синтезу природных процессов и разные условия этого синтеза. Один из них состоит в интеграции процессов раздельно по формам движения материи, т.е. в рассмотрении их на уровне физических, химических и биологических закономерностей и методами соответствующих наук. Такой подход вполне закономерен, на нем основано формирование особых направлений в науке – геофизики ландшафта, геохимии ландшафта и биотоки ландшафта (биогеоценологии). Все они изучают функционирование ландшафта с позиций соответствующих фундаментальных наук. Однако в географической реальности элементарные природные процессы, связанные с отдельными движениями, переплетаются и переходят друг в друга. С точки зрения географа, их расчленение искусственно и условно. Уже в отраслевых географических дисциплинах делается шаг к их синтезу. Так называемые частные географические процессы, например, сток или почвообразование, нельзя считать только физическими, только химическими или биологическими. Физическая сущность стока элементарна – это всего лишь движение воды под действием силы тяжести. Однако, географический смысл стока вовсе не сводится к простым законам механики.

Сток - это одновременно процесс гидрологический, геоморфологический, геохимический и географический в широком смысле слова. Сток, в свою очередь, служит лишь звеном ещё более сложного и комплексного процесса – влагооборота. Рассматривая влагооборот как единый процесс, мы делаем ещё один шаг к географическому синтезу, к познанию функционирования геосистем, как целостных образований. Влагооборот – важная составная часть механизма взаимодействия между компонентами геосистем и между самими геосистемами, его можно определить как одно из главных функциональных звеньев ландшафта. Другим звеном является минеральный обмен, или геохимический круговорот. В совокупности влагооборот и минеральный обмен (вместе с газообменом) охватывают все вещественные потоки в геосистеме. Но перемещение, обмен и преобразование вещества сопровождаются поглощением, трансформацией и высвобождением – массообмен тесно связан энергообменом, который также следует рассматривать как особое функциональное звено ландшафта.

Таким образом, мы получили три главных составляющих функционирования ландшафта. Но это лишь один подход к его изучению, который должен быть дополнен с учётом иных важных аспектов функционирования.

В каждом из названных звеньев необходимо различать биотическую и абиотическую составляющие. Во влагообороте, например, с биотой связаны такие существенные потоки, как деструкция и транспирация, участие воды в фотосинтезе, а также задержание части осадков листовой поверхностью и др. Биотический обмен веществ – наиболее активная часть минерального обмена. Биологический метаболизм осуществляется, как известно, за счёт использования солнечной энергии. Продукционный процесс и связанное с ним вещественно - энергетическое взаимодействие биоты со всеми остальными компонентами геосистемы - настолько важная составляющая в механизме функционирования ландшафта, что вполне закономерно выделять её в особое функциональное звено, как бы перекрывающее три исходных звена, намеченных ранее. Подобное перекрытие служит доказательством единства функционирования геосистемы как целого. В сущности, перекрытия имеются между всеми звеньями. Транспирация, например, составной элемент влагооборота и одновременно биологического метаболизма и энергетики геосистемы. Любое расчленение единого процесса функционирования на звенья условно и служит лишь методическим приёмом в целях познания.

Далее, в каждом звене важно различать внешние (входные и выходные) потоки и внутренний оборот. Функционирование геосистем квазизамкнутый характер, т.е. форму круговоротов с годичным циклом. Степень замкнутости цикла может сильно варьировать, представляя важную характеристику ландшафта. От интенсивности внутреннего энергомассообмена зависят многие качества ландшафта, в частности его устойчивость к возмущающим внешним воздействиям. Для количественной оценки функционирования и соотношения между внешним и внутренним вещественно-энергетическим обменом необходимы данные по балансам различных видов вещества и энергии, т.е. нужно знать величины их поступления в систему, внутреннего обмена, трансформации и аккумуляции в системе и потерь за счёт выноса во внешнюю среду. Изученность ландшафтов в этом отношении крайне недостаточна и неравномерна, так что пока еще приходится пользоваться отрывочными, не всегда однородными, а также косвенными данными.

 

2.2. Влагооборот в ландшафте

Сложная система водных потоков пронизывает ландшафт подобно кровеносной системе. Посредством потоков влаги происходит основной минеральный обмен между блоками ландшафта. Внешние вещественные связи геосистемы также осуществляются преимущественно через входные и выходные водные потоки. Перемещение влаги сопровождается формированием растворов, коллоидов и взвесей, транспортировкой и аккумуляцией химических элементов; подавляющее большинство геохимических (в том числе биогеохимических) реакций происходит в водной среде.

Ежегодный запас обращающейся в ландшафте влаги составляют атмосферные осадки – жидкие и твердые, а также вода, поступающая в почву за счёт конденсации водяного пара. Часть осадков перехватывается поверхностью растительного покрова и, испаряясь с неё, возвращается в атмосферу; в лесу некоторое количество стекает по стволам деревьев и попадает в почву. Влага, непосредственно выпадающая на поверхность почвы, частично уходит за пределы ландшафта с поверхностным стоком и затрачивается на физическое испарение, остальное количество фильтруется в почвогрунты и образует наиболее активную часть влагооборота. Относительно небольшая доля расходуется на абиотические процессы в почве, участвует в гидратации и дегидратации, более или менее значительное количество почвенно-грунтовой влаги выпадает из внутреннего оборота (потери на подземный сток); при иссушении почвы влага поднимается по капиллярам и может пополнить поток испарения.

Однако в большинстве ландшафтов почвенные запасы влаги в основном всасываются корнями растений и вовлекаются в продукционный процесс. Интенсивность влагооборота и его структура специфичны для разных ландшафтов и зависят, прежде всего, от энергообеспеченности и количества осадков, подчиняясь зональным и азональным закономерностям.

В табл.1 приведены величины основных элементов водного баланса для некоторых типов ландшафтов.

Таблица 1

Основные элементы водного баланса типичных ландшафтов в различных зонах (средние годовые показатели)

 

№№ п/п Ландшафты Осадки, мм Испаре- ние, мм Сток, мм Коэффициент стока
  Тундровые восточноевропейские       0,60
  Северо-таежные восточноевропейские       0,50
  Среднетаёжные восточноевропейские       0,45
  Южно-таежные восточноевропейские       0,40
  Подтаёжные восточноевропейские       0,35
  Подтаёжные западносибирские       0,15
  Широколиственно-лесные западноевропейские       0,30
  Широколиственно-лесные восточноевропейские       0,20
  Лесостепные восточноевропейские       0,15
  Лесостепные западносибирские       0,04
  Степные северные восточноевропейские       0,12
  Полупустынные казахстанские       0,02
  Пустынные туранские     <1 <0,01
  Субтропические влажные лесные восточноазиатские       0,50
  Пустынные тропические североафриканские <10 <10 <1 <0,01
  Саванновые опустыненные североафриканские       0,04
  Саванновые типичные североафриканские       0,10
  Саванновые влажные североафриканские       0,20
  Влажные экваториальные центральноафриканские       0,35
  Влажные экваториальные амазонские       0,50

 

По данным табл.1 можно судить о соотношениях внутренних и внешних потоков влаги и интенсивности внутреннего влагооборота. Величина суммарного (поверхностного и подземного) стока служит показателем выходного потока влаги. Если принять, что в среднегодовом выводе приход влаги извне сбалансирован с её расходом на сток, то следует считать, что поступление осадков в ландшафт извне (адвентивных) количественно равно годовому стоку. Абсолютные величины внешнего влагообмена хорошо увязываются с общими зонально - азональными закономерностями циркуляции биосферы: наиболее обильное поступление внешних осадков (и соответственно наиболее интенсивный вынос воды из ландшафта) наблюдается в экваториальных широтах, а также в муссонных тропиках и субтропиках, затем в приокеанических областях пояса западного воздушного переноса. Наиболее слабые входные и выходные потоки влаги свойственны внутриконтинентальным областям и особенно поясу тропической пассатной циркуляции.

Обобщенным показателем внутри ландшафтного влагооборота можно считать суммарное испарение. При наличии достаточного запаса влаги его интенсивность определяется энергоресурсами. Поэтому чётко выраженный пик внутреннего оборота влаги также приходится на экваториальную зону, и отсюда происходит закономерный спад к полюсам, но на этом общем фоне резкими «провалами» выглядят аридные зоны и сектора.

Соотношение между внешним и внутренним влагооборотом выражаются коэффициентом стока или дополняющим его до единицы коэффициентом испарения. Как следует из табл.1, только в высоких широтах внешние потоки влаги превосходят внутренний оборот, в гумидных экваториальных, тропических и субтропических ландшафтах оба типа потоков примерно равны, с усилением аридности доля внутреннего оборота растет, хотя по абсолютной величине он уменьшается. Во внутри ландшафтном влагообороте основную роль играет биота, особенно лесные сообщества. Кроны деревьев перехватывают до 20% и более годового количества осадков (сосняки – 140-150 мм; ельники – 200-230 мм, экваториальные леса – до 500 мл). Основная их часть, как уже отмечалось, испаряется, но некоторое количество стекает по стволам деревьев (табл.2).

Таблица 2

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...