Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Часть I. Положение: столбец за столбцом, ряд за рядом




Аннотация

 

«Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева» посвящена одному из величайших достижений науки – Периодической системе химических элементов, удивительно сложному человеческому изобретению. Вы познакомитесь с историей элементов, окунетесь в мир химии и удивительных превращений, узнаете тайны науки, которые тщательно скрывались и оберегались. Для всех увлеченных и неравнодушных.

 

Сэм Кин

Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева

 

Sam Kean

The Disappearing Spoon: And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements

Copyright © 2010 by Sam Kean. This edition published by arrangement with Little, Brown and Company, New York, New York, USA. All rights reserved.

© Оформление. ООО «Издательство «Эксмо», 2015

 

Введение

 

В детстве (было это в начале 80-х) я любил болтать с полным ртом – там могла быть еда, инструменты дантиста, пузырьки, что угодно. Даже если никого рядом не было, я все равно так разговаривал. С этого увлечения и начался мой интерес к периодической системе элементов. Мне часто доводилось лежать в одиночестве с градусником под языком. Во втором и третьем классе я болел ангиной не меньше десяти раз, от нее целыми днями было больно глотать. Меня совершенно не смущало подолгу оставаться дома, где я мог лечиться ванильным мороженым и шоколадной подливкой. Кроме того, во время постельного режима у меня всегда был лишний шанс разбить старенький ртутный градусник.

Бывало, я лежал со стеклянной палочкой под языком и вдруг громко отвечал на воображаемый вопрос. Градусник выскальзывал у меня изо рта и разбивался о деревянный пол, капельки ртути начинали кататься по доскам, как шарики из крошечных подшипников. В мгновение ока прибегала мама и, несмотря на свой артрит, быстро нагибалась и начинала сгонять шарики в кучу, как барашков. Она ловко орудовала зубочисткой как маленькой клюшкой, собирая капельки так близко, что они почти касались друг друга. Вдруг, после очередного толчка одна капелька поглощала другую. Получался один ровный шарик, подрагивавший там, где только что было два. Мама повторяла этот фокус снова и снова, по всему полу, пока вся жидкость не сливалась в одну серебристую лужицу.

После того как вся ртуть была собрана, мама брала пустой пластмассовый пузырек из-под таблеток (этот пузырек с зеленой этикеткой всегда стоял у нас на кухне, на полке для безделушек, между голубой керамической кружкой – памятью о семейной встрече в 1985 году – и плюшевым мишкой с удочкой). Мама загоняла шарик на конверт, а потом до капли доливала содержимое последнего погибшего градусника к уже покоившейся в сосуде ртути – блестящий шарик в бутылочке уже достиг размеров ореха-пекана.

Иногда, прежде чем поставить пузырек на место, мама наливала ртуть в колпачок и давала нам с братьями полюбоваться, как в нем катается волшебный металл, так легко рассыпающийся и сливающийся воедино. Я искренне сочувствовал тем детям, чьи матери настолько боялись ртути, что даже не давали им есть тунца[1]. Средневековые алхимики, несмотря на свою жажду золота, считали ртуть самым могучим и романтическим веществом во Вселенной. В детстве я совершенно их понимал. Я даже готов был вслед за ними поверить, что ртуть не вписывается в прозаические природные категории – она одновременно является твердым телом и жидкостью, металлом и водой, частичкой рая и ада; что в ней живут потусторонние духи.

Позже я узнал, что ртуть имеет такие свойства именно потому, что является химическим элементом. В отличие от воды (Н2O) или углекислого газа (СO2) и абсолютного большинства тех веществ, с которыми нам приходится сталкиваться в жизни, ртуть нельзя разложить на более простые составляющие. На самом деле, ртуть – один из самых высокомерных элементов. Ее атомы предпочитают дружить только с другими атомами ртути, сводя к минимуму контакты с окружающим миром. Поэтому ртуть и собирается в шарики. Большинство жидкостей, которые мне доводилось разливать в детстве, вели себя иначе. Вода разливалась повсюду, ровно то же происходило с растительным маслом, уксусом и растаявшим желе. Ртуть никогда не оставляла пятен. Родители всегда заставляли меня носить тапки после того, как случалось разбить градусник, чтобы мельчайшие осколки стекла не вонзились мне в ноги. Но не помню, чтобы меня пугали разлитой ртутью.

Долгое время я интересовался восьмидесятым элементом в школе, искал о нем упоминания в книгах, как другие следят, не упоминают ли их знакомого в газетах. Я вырос на Великих Равнинах. На уроках истории нам рассказывали, как Льюис и Кларк[2]прошли через Южную Дакоту и остальную территорию Французской Луизианы, захватив с собой микроскоп, компасы, секстанты, три ртутных термометра и другие инструменты. Но тогда я не знал, что они взяли с собой еще и шестьсот ртутных слабительных пилюль, каждая вчетверо больше всем знакомой таблетки аспирина. Это лекарство называлось «Желчные пилюли доктор Раша» – по имени Бенджамина Раша, одного из участников подписания Декларации независимости США и врача-героя, отважно работавшего в Филадельфии во время эпидемии желтой лихорадки, разразившейся в 1793 году. Его любимым лекарством от всех болезней была кашица из хлорида ртути, принимаемая перорально. Несмотря на тот прогресс, который произошел в медицине в период с 1400 по 1800 год, врачи в ту эпоху оставались скорее знахарями, чем медиками. Руководствуясь своеобразной симпатической магией (магией подобия), лекари предполагали, что прекрасная и заманчивая ртуть может исцелять страждущих, проводя их через жестокий кризис – яд

уничтожает яд. Доктор Раш потчевал пациентов своим раствором, пока они не начинали исходить слюной, через недели и месяцы такого лечения у людей часто выпадали волосы и зубы. Несомненно, снадобье мистера Раша травило или просто убивало тех, кого пощадила желтая лихорадка. Тем не менее, поднаторев в таком лечении в Филадельфии, Раш снабдил этим лекарством Льюиса и Кларка. Ртутные пилюли обладали побочным слабительным эффектом, благодаря которому современные археологи могут с легкостью находить те места, где разбивали лагеря эти первопроходцы. Учитывая, какой дрянной пищей и грязной водой им приходилось довольствоваться в пути, все участники отряда то и дело имели проблемы с желудком. Во многих местах на пути экспедиции образовались небольшие скопления ртути – вероятно, как раз там, где исследователи устраивали отхожие места. Пожалуй, иногда лекарство доктора Раша срабатывало слишком уж хорошо.

Ртуть оказалась и в кабинете естествознания. Когда я впервые увидел кавардак элементов в периодической таблице, я не нашел там ртуть. Но она там есть – между плотным и мягким золотом и таллием, который, кстати, тоже ядовит. Символ ртути – Hg – состоит из двух букв, которых, казалось бы, и близко нет в ее названии. Все дело в том, что эти буквы – из латинского названия, hydrargyrum, которое переводится как «вода-серебро». Этот факт помог мне понять, как очень древние языки и мифология повлияли на формирование периодической системы. Некоторые следы мифологии вы можете заметить и в названиях самых новых, сверхтяжелых элементов, расположенных в нижнем ряду таблицы.

Для ртути нашлось место и в кабинете литературы. Когда-то шляпники использовали ярко-оранжевый ртутный раствор для отделения меха от шкуры. И эти мастера, вынужденные вдыхать пары ртути, постепенно начинали походить на Безумного Шляпника из «Алисы в Стране чудес» – теряя и волосы, и разум. Наконец, я осознал, насколько ядовита ртуть; наверное, именно из-за ее токсичности пилюли доктора Раша прочищали кишки так хорошо. Ведь организм пытается избавиться от любых ядов, в том числе, от ртути. Но как ни вредно глотать ртуть, ее пары еще токсичнее. Они истрепывают «проводки» нашей центральной нервной системы и прожигают дыры в мозгу, подобно прогрессирующей болезни Альцгеймера.

Но чем яснее я представлял себе опасность ртути, тем сильнее привлекала меня ее разрушительная красота. Помните «Тигра светло горящего»[3]Уильяма Блейка? Шли годы, родители обновили кухню и убрали полку с кружкой и медвежонком, но сложили все эти безделушки в картонную коробку. В один из последних визитов домой я докопался до бутылочки из-под таблеток и открыл ее. Покачивая пузырек, я ощущал, как в нем перекатывается тяжелая жидкость. Заглянув через край, я не мог оторвать глаз от маленьких капель, расплескавшихся по стенкам. Они просто лежали там, искрясь, как совершенные водяные шарики, которые можно встретить только в фантазиях. Все детство разлитая ртуть стойко ассоциировалась у меня с жаром. Но на этот раз, представляя, что кроется за ужасной симметрией этих крошечных сфер, я ощутил озноб.

 

* * *

 

Интересуясь этим элементом, я познакомился с его историей, этимологией, ролью в алхимии, литературе, криминалистике и психологии. Но я собрал и много других историй о химических элементах – особенно хорошо эта коллекция пополнялась в годы обучения в колледже. Там я занимался исследованиями, а также познакомился с несколькими любезными профессорами, которые охотно отвлекались от работы, чтобы немного поболтать о науке.

В колледже я выбрал физику в качестве профильного предмета, но постоянно мечтал поскорее вырваться из лаборатории и вновь взяться за перо. Я чувствовал себя жалким среди одноклассников, одаренных молодых ученых, которые обожали метод проб и ошибок – мне же это было не дано. Я застрял в Миннесоте на пять унылых лет и получил диплом с отличием по физике. Но, несмотря на то что я провел в лаборатории сотни часов, зазубрил тысячи уравнений, начертил десятки тысяч схем с блоками и наклонными съездами без учета трения, истинное образование я приобрел в беседах с профессорами. Они рассказали мне о Ганди, и о Годзилле, и об ученом-евгенике, который попытался украсть Нобелевскую премию при помощи германия. О том, как куски металлического натрия бросают в реку, где они взрываются и глушат рыбу. О людях, блаженно задыхающихся азотом в космических шаттлах. О бывшем профессоре из нашего кампуса, который экспериментировал с кардиостимулятором, питающимся от плутония, вставленным в его собственную грудь. Профессор ускорял и замедлял аппарат, манипулируя огромными электромагнитными катушками.

Я накрепко запомнил все эти истории. А недавно, вспомнив о ртути за завтраком, я осознал, что почти со всеми элементами из периодической системы связана какая-нибудь смешная, или странная, или страшная история. В то же время таблица Менделеева – одно из величайших интеллектуальных достижений человеческого рода. Это одновременно и научный шедевр, и сборник рассказов. Я написал эту книгу, чтобы тщательно отобразить все ее слои – как рисунки на кальке в учебнике по анатомии. Все эти рисунки рассказывают одну и ту же историю, но делают ее «срезы» на разной глубине. В простейшем смысле периодическая система – это каталог всех элементов, встречающихся в нашей Вселенной. В таблице сто с небольшим символов, обладающих яркими индивидуальностями. Из этих элементов состоит все, что мы видим и что нас окружает. Таблица построена так, что ученый-химик легко улавливает взаимосвязи между

различными элементами, может объединить их в семейства. Если рассмотреть таблицу на более сложном уровне, то можно увидеть, что в ней закодирована информация о происхождении каждого атома, а также о том, в какие атомы он может превращаться, на какие элементы распадаться. Эти атомы естественным образом объединяются в динамические системы, включая живые существа. Периодическая система позволяет прогнозировать, какие связи будет образовывать тот или иной атом. В таблице даже угадываются «коридоры» гнусных элементов, наносящих вред живым существам. Порой эти элементы бывают и смертельно ядовиты.

Наконец, периодическая система – это удивительное человеческое достижение, артефакт, отражающий чудесные, коварные и порочные грани человеческого существа. Таблица позволяет понять, как мы взаимодействуем с окружающим миром. История нашего вида записана в виде компактного и красивого либретто. Все эти уровни заслуживают специального изучения, от простого к сложному. Сюжеты из периодической таблицы не только станут для вас увлекательным чтением, но и помогут понять такие вещи, о которых никогда не пишут в учебниках и лабораторных пособиях. Мы едим химические элементы и дышим ими; люди ставят на них и проигрывают огромные суммы; философы обращаются к элементам, задумываясь о значении науки. Элементы отравляют людей и порождают войны. Между водородом в левом верхнем углу и искусственно синтезированными эфемерными веществами, занимающими нижние ряды, вы найдете пузыри, бомбы, деньги, алхимию, политические игры, историю, яды, преступления и любовь. А также немного науки.

Здесь и далее концевыми сносками обозначены примечания автора, в которых он подчеркивает некоторые интересные моменты.

 

Часть I. Положение: столбец за столбцом, ряд за рядом

 

Прописка – это судьба

 

Услышав выражение «таблица Менделеева», большинство читателей вспомнит большую схему, которая висит в кабинете химии. Это асимметричное собрание рядов и столбцов, которые словно выглядывают из-за плеч учителя. Обычно таблица огромная, метра два в ширину. Она одновременно и подавляет вас, и кажется величественной, подчеркивая важность химии. Вы знакомитесь с ней уже в сентябре, и она остается незаменимой до самого конца мая. Кстати, это единственное наглядное пособие, которым можно пользоваться на экзамене – когда в вашем распоряжении нет ни конспектов, ни учебников. Разумеется, когда-то периодическая система могла вас и раздражать, не в последнюю очередь потому, что многим она нисколечко ни помогает, хоть и висит у всех на виду как гигантская и абсолютно легальная шпаргалка.

С одной стороны, периодическая система кажется организованной и безукоризненной – практически идеальный образец научной схемы. С другой стороны, это такой паноптикум длинных чисел, аббревиатур и каких-то последовательностей, напоминающих компьютерные сообщения об ошибках ([Xe]6s24f15d1), что порой сложно обозревать таблицу без досады. И хотя таблица, несомненно, связана с другими науками, в частности с биологией и физикой, эта связь не всем понятна с первого взгляда. Вероятно, главным разочарованием для большинства учеников было то, что многие люди действительно понимали таблицу, знали, как она работает, запросто выуживали из нее разнообразные факты. Наверное, такое же раздражение одолевает дальтоников, на глазах у которых дети с нормальным зрением находят семерки и девятки в цветной головоломке. Речь о важной, но неочевидной информации, которая так никогда и не складывается в цельную картину. Многие вспоминают о таблице со смешанным чувством увлеченности, пристрастия, неполноценности и брезгливости.

Прежде чем познакомить класс с периодической системой, каждый учитель химии должен убрать из нее всю информацию и показать школьникам пустую сетку.

 

 

На что она похожа? На какой-то замок с неровными стенами – как будто королевские каменщики немного не достроили левую сторону. С обеих сторон возвышаются высокие оборонительные бастионы. В таблице восемнадцать зубчатых столбцов и семь горизонтальных рядов. Снизу примостилась полоса из двух дополнительных рядов. Стена замка сложена из «кирпичей», и в этом кроется первое неочевидное свойство таблицы – каждый «кирпичик» может стоять только на своем месте.

Каждая клетка содержит один элемент, тип простого вещества. В настоящее время таблица состоит из 112 элементов, существование еще нескольких предстоит подтвердить[4]. Весь замок развалится, если неправильно поставить хотя бы один кирпичик. Это не преувеличение: если ученые придут к выводу, что какой-то элемент должен находиться в другой клетке или что два элемента можно поменять местами, то вся стройная система разрушится.

Еще одна архитектурная особенность замка заключается в том, что в разных частях его стен сосредоточены разные материалы. Таким образом, все кирпичи состоят из разных веществ, и у каждого элемента – свои уникальные характеристики. Семьдесят пять процентов элементов являются металлами, поэтому почти все они – сероватые холодные твердые вещества, по крайней мере при обычной температуре. В нескольких столбцах в «восточной части» стены содержатся газы. Всего два элемента – ртуть и бром – при комнатной температуре являются жидкостями. Между металлами и газами (если представить, что таблица Менделеева – это карта США, то этот регион окажется примерно на месте штата Кентукки) находится несколько сложно классифицируемых элементов. Они имеют аморфную структуру, благодаря чему могут образовывать чрезвычайно активные кислоты – в миллиарды раз более сильные, чем те вещества, которые обычно хранятся на складе реагентов. Вообще, если бы каждый кирпичик состоял именно из того вещества, которое он обозначает, то химический замок был бы химерой с включениями и флигелями из самых разных времен. Можно сказать, что таблица напоминает здание в стиле Даниэля Либескинда, в котором, казалось бы, несовместимые материалы сплетены в элегантное целое.

Чертежи для стен нашего замка создавались так долго именно потому, что с координатами элемента в таблице связана практически вся интересная научная информация о нем. Прописка каждого элемента фактически определяет его судьбу. Теперь, когда вы примерно представляете, как построена периодическая таблица, я могу перейти к более дельной метафоре: предположим, что таблица – это карта. Чтобы поближе познакомить вас с нею, давайте начертим эту карту в направлении с востока на запад. По пути поговорим как о самых известных, так и о менее популярных элементах.

Начнем с восемнадцатого столбца, крайнего справа. В нем расположены благородные (инертные) газы. «Благородный» – немного старомодное слово, которое ассоциируется скорее с этикой и психологией, чем с химией. Действительно, термин «благородные газы» зародился в колыбели западной философии – Древней Греции. Именно в Греции жил Платон, впервые предложивший термин «элемент» (по-гречески – «стойхейя»). Это слово он использовал как общее название для мельчайших частиц материи. Он опирался на идеи древнегреческих философов Левкиппа и Демокрита, впервые развивших концепцию атома. Платон покинул Афины около 400 года до н. э. – после того как ушел из жизни его наставник Сократ, оставаться в городе Платону было небезопасно. Затем он долгое время странствовал и писал философские труды. Разумеется, Платон не знал, что такое «элемент» с химической точки зрения. Но если бы он об этом знал, то ему, несомненно, больше всего понравились бы элементы с «восточного края» таблицы – особенно гелий.

В своем диалоге «Пир», произведении о любви и страсти, Платон заявляет, что каждое существо стремится найти свою недостающую половинку. Если говорить о людях, то это стремление выражается в виде страстей и плотской любви – а также всех забот, с ними связанных. Кроме того, во всех своих диалогах Платон подчеркивал, что абстрактные и неизменные сущности по природе своей более благородны, чем те субстанции, которые перемешиваются друг с другом и взаимодействуют с грубой материей. Вероятно, именно поэтому он и обожал геометрию с ее идеализированными окружностями и кубами – объектами, которые существуют только в нашем разуме. Применительно к нематематическим объектам Платон развил теорию «форм», в соответствии с которой все предметы являются «тенями» того или иного идеального типа. Например, все деревья – это несовершенные «модели» идеального дерева, к безупречной «древесности» коего они тяготеют. То же можно сказать о рыбах и «рыбости» и даже о чашах и «чашести». Платон верил, что эти идеальные формы – не чисто умозрительные конструкты, а действительно существуют в реальности, пусть они и парят где-то в «эмпиреях», недоступных для обыденного человеческого восприятия. Сложно себе представить степень его изумления, если бы он узнал, что через много веков ученые будут создавать идеальные формы из гелия.

В 1911 году голландско-немецкий ученый остужал ртуть в жидком гелии. Он обнаружил, что при температуре ниже -268 °C эта система утрачивает электрическое сопротивление и становится идеальным проводником. На самом деле, это поразительное явление – представьте себе, что вы замораживаете до такой температуры iPod и обнаруживаете, что батарея совершенно перестает разряжаться, независимо от того, с какой громкостью и как долго вы включаете на нем музыку. Чудо продолжается до тех пор, пока жидкий гелий поддерживает в микросхемах нужную температуру. Русско-канадская группа ученых в 1937 году сотворила с гелием еще более поразительную вещь.

Оказалось, что при температуре около -270 °C гелий приобретает свойство сверхтекучести: становится жидкостью с нулевой вязкостью и нулевым гидравлическим сопротивлением, то есть идеально текучей жидкостью. Сверхтекучий гелий не подчиняется силе тяжести, течет вверх и перетекает через стены. На тот момент эти открытия были ошеломляющими. Ученые иногда хитрят и считают, что при таких процессах трение становится нулевым, но делается это лишь для упрощения расчетов. Даже Платон не мог предположить, что кто-то когда-то обнаружит одну из его идеальных форм.

Кроме того, гелий – самый яркий пример «элементарного» вещества. Этот газ нельзя расщепить или как-либо изменить обычными химическими методами. Для того чтобы осознать, что же такое «химический элемент», ученым потребовалось около 2200 лет – поиск начался примерно в 400 году до н. э. в Древней Греции и завершился к 1800 году в Европе. Дело в том, что большинство элементов очень редко встречаются в чистом виде. Сложно было понять, что делает углерод углеродом, так как этот элемент встречается в виде тысяч соединений, каждое из которых обладает особенными свойствами. Сегодня мы знаем, что, например, углекислый газ – не элемент, так как каждая молекула этого газа состоит из атомов углерода и кислорода. Но углерод и кислород являются элементами, так как их нельзя разложить на более простые составляющие, не разрушив атомы. Возвращаясь к теме диалога «Пир» и к теории Платона о страстной тяге к недостающей половинке, отметим, что практически все элементы «тяготеют» к атомам других элементов, с которыми они «стремятся» образовать соединения. Эти соединения «маскируют» истинную сущность элементов. Даже самые чистые элементы, например молекулярный кислород (O2), содержащийся в воздухе, в природе чаще всего встречаются в соединениях. Но ученые могли бы гораздо раньше догадаться о том, что же такое «элемент», если бы обнаружили гелий, который не реагирует ни с одним другим веществом и всегда является чистым элементом[5].

Такие свойства гелия неслучайны. Во всех атомах содержатся отрицательно заряженные частицы, называемые электронами, которые расположены в атоме в разных «слоях», по-научному называемых энергетическими уровнями. Эти уровни являются концентрически вложенными друг в друга. На каждом уровне для заполнения и достижения равновесия требуется определенное количество электронов. На самом глубоком уровне может быть максимум два электрона. На большинстве других уровней может находиться до восьми электронов. Как правило, в атоме элемента содержится равное количество отрицательно заряженных электронов (на энергетических уровнях) и положительно заряженных протонов (в ядре). Таким образом, атом электрически нейтрален. Атомы могут свободно обмениваться электронами. Если атом приобретает лишние электроны или испытывает в них недостачу, то он становится ионом.

Важно понимать, что все атомы всегда заполняют самые глубокие энергетические уровни собственными электронами, насколько это возможно, частично «оголяя» из-за этого внешний уровень. После этого они отдают свои внешние электроны, делятся ими или «крадут» недостающие, чтобы внешний энергетический уровень был полон. Некоторые элементы обмениваются электронами очень «дипломатично», тогда как другие проявляют в этом крайнюю несдержанность. Половина химической науки заключена в следующей фразе: атомы, у которых есть пробелы во внешнем энергетическом уровне, будут драться, обмениваться, клянчить, заключать союзы и разрывать их ради одной цели – собрать полный комплект электронов на внешнем уровне.

Гелий – элемент № 2. У него есть два электрона, именно столько требуется ему для заполнения своего единственного энергетического уровня. Благодаря такой «закрытой» конфигурации гелий является поразительно независимым веществом. Ему не приходится взаимодействовать с другими атомами, делиться электронами или воровать их, он всегда целый. Можно сказать, что гелий гармоничен сам по себе. Более того, подобная конфигурация наблюдается во всем восемнадцатом столбце под гелием – у газов неона, аргона, криптона, ксенона и аргона. У всех этих элементов внешние оболочки «закрыты», на них красуется полный комплект электронов. Поэтому ни один благородный газ не реагирует с другими элементами при нормальных условиях. Вот почему, несмотря на исключительно упорные попытки обнаружить и назвать эти элементы (попытки предпринимались на протяжении всего XIX века), восемнадцатый столбец пустовал вплоть до 1895 года. Такая отрешенность от мирской суеты, роднящая благородные газы с идеальными окружностями и треугольниками, несомненно, очаровала бы Платона. Именно с очарованием можно сравнить чувства ученых, обнаруживших гелий и его собратьев на Земле, – неудивительно, что эти газы были названы «благородными». Можно выразить эту идею и на языке Платона: «Он, обожающий все совершенное и вечное и презирающий тленное и мирское, несомненно, предпочел бы благородные газы всем другим элементам. Ведь благородные газы никогда не изменяют себе, не колеблются, не потакают другим элементам – не то что плебеи, торгующие всякой всячиной на рынке. Эти газы непогрешимы и идеальны».

Но инертность, свойственная благородным газам, в мире элементов встречается редко. На один столбец влево от благородных газов находятся самые реактивные и энергичные вещества периодической таблицы – галогены. А если мы представим периодическую систему в виде глобуса (такую карту называют проекцией Меркатора), то запад и восток сомкнутся, и рядом с инертными газами окажутся самые активные металлы с крайнего запада, из первого столбца таблицы. Они называются «щелочными». Уравновешенные благородные газы образуют своеобразную «демилитаризованную зону», а по обе стороны от них гнездятся нестабильные соседи.

В некоторых отношениях щелочные металлы напоминают обычные, но, в отличие от большинства металлов, они не ржавеют и не корродируют, а спонтанно взрываются в воздухе или в воде. Щелочные металлы очень легко образуют соединения с галогенами. На внешнем энергетическом уровне в атомах всех галогенов содержится по семь электронов, то есть недостает всего одного электрона до полного октета. У щелочных металлов на внешнем энергетическом уровне всего один электрон, а под ним – полный октет[6]. Поэтому совершенно естественно, что щелочные металлы легко отдают свой единственный внешний электрон галогенам, а между образующимися в результате ионами – положительным и отрицательным – возникает сильная химическая связь.

Подобные связи образуются все время, а электроны являются важнейшими компонентами атома. Они занимают почти все пространство в атоме, вращаясь, подобно облакам, вокруг компактного центра атома – ядра. Такое неравномерное распределение элементарных частиц сохраняется даже несмотря на то, что частицы ядра – протоны и нейтроны – гораздо массивнее электронов. Если увеличить атом до размеров стадиона, то ядро, состоящее из протонов и нейтронов, можно будет сравнить с теннисным мячом на пятидесятиярдовой отметке[7]. Электроны стали бы похожи на булавочные головки, молниеносно проносящиеся вокруг ядра. Но они летали бы так быстро и врезались в вас настолько часто, что вы просто не смогли бы попасть на стадион: облака электронов преградили бы вам путь, как непроницаемая стена. Таким образом, при столкновении двух атомов их ядра не соприкасаются; происходит лишь обмен электронами[8].

Маленькая оговорка: не стоит буквально понимать модель, в которой маленькие электроны на огромной скорости проносятся вокруг плотного ядра. Точнее, электроны не похожи на маленькие планеты, вращающиеся вокруг огромного ядра (Солнца). Аналогия с планетарной системой хороша, но, как и любой аналогией, не увлекайтесь ею. Многие известные ученые убедились в неверности этой аналогии на собственном горьком опыте.

Ионные связи объясняют, почему легко образуются химические соединения между галогенами и щелочными металлами, например хлорид натрия (поваренная соль). Не менее активно связываются и атомы таких элементов, у которых есть два лишних электрона (например, кальций) и которым недостает двух электронов (кислород). Для них это простейший способ «удовлетворить взаимные нужды». Соединения между элементами, не относящимися к «взаимно противоположным» столбцам, образуются по схожим принципам. Два иона натрия (Na+) соединяются с одним ионом кислорода (О2), образуя оксид натрия (Na2O). В соответствии с этими же законами образуется хлорид кальция (СаСl2). В принципе, можно довольно точно угадать, какую формулу будет иметь соединение двух элементов, если проверить номера столбцов, откуда взяты эти элементы, и узнать их заряды. Эти принципы отлично сочетаются с двусторонней симметрией таблицы.

К сожалению, не все в периодической системе так просто и гладко. Для некоторых элементов характерен такой нонконформизм, что о них стоит поговорить отдельно.

 

* * *

 

Есть один старый анекдот о лаборанте, который ни свет ни заря врывается в кабинет к профессору, страшно воодушевленный, несмотря на то что целую ночь провел за работой. Он держит в руке закупоренную колбу с шипящей пузырящейся зеленой жидкостью и восклицает: «Я открыл универсальный растворитель!» А профессор многозначительно смотрит на склянку и спрашивает: «А что это за универсальный растворитель?» Лаборант с жаром произносит: «Это кислота, разлагающая любые вещества!»

Профессор еще мгновение осмысливает эту поразительную новость – ведь универсальный растворитель не только станет научным чудом, он еще и озолотит обоих химиков, – а потом спрашивает: «А как вам удалось принести его в стеклянном сосуде?»

Замечательная концовка, так и представляю себе ехидно ухмыляющегося Гилберта Льюиса. Электроны – это движущая сила периодической системы, и именно Льюис проделал огромную работу, пролившую свет на то, как электроны взаимодействуют и образуют межатомные связи. Работы Льюиса, связанные с природой электронов, особенно много значили для изучения кислот и оснований, поэтому он по достоинству оценил бы абсурдное заявление лаборанта. Возможно, соль этого анекдота напомнила бы Льюису, как недолговечна может быть научная слава.

Льюис вырос в Небраске, в зрелости ему довелось немало попутешествовать. Около 1900 года он учился в колледже и университете в Массачусетсе, потом продолжил образование в Германии, под руководством Вальтера Нернста. Обучение у Нернста оказалось таким тяжким, как по объективным, так и по субъективным причинам, что Льюис выдержал в Германии всего несколько месяцев, а потом вернулся в Массачусетс и поступил на академическую работу. Эта деятельность ему также не пришлась по душе, поэтому вскоре он отправился на Филиппины, незадолго до того перешедшие под контроль США, и стал работать на американское правительство. С собой он захватил всего одну книгу – «Теоретическую химию» Нернста. На Филиппинах Льюис годами выискивал у Нернста самые мелкие ошибки и с настоящей одержимостью публиковал статьи с их опровержениями[9].

Через какое-то время Льюис истосковался по дому и перебрался в Калифорнийский университет в городе Беркли. Там он сорок лет проработал на химическом факультете, превратив его в лучший в мире. Подобная фраза напоминает счастливый конец истории, но до конца еще далеко. Один из самых замечательных фактов из жизни Льюиса заключается в том, что он, вероятно, был величайшим из ученых, так и не получивших Нобелевскую премию. Никто не номинировался на Нобелевскую премию чаще, но неприкрытые амбиции и бесконечные дискуссии, которые Льюис вел по всему миру, лишили его шансов на достаточное количество голосов. Вскоре он начал отказываться от престижных должностей, выражая так свой протест (а возможно – и по принуждению) и превратился в глубокого научного отшельника.

Нобелевская премия не досталась Льюису не только из-за межличностных конфликтов, но и потому, что его исследования были обширными, но не слишком глубокими. Он не открыл ни одной удивительной вещи, такой, узнав о которой вы скажете «Ух ты!». Нет, он провел всю жизнь за уточнением того, как электроны из атомов взаимодействуют в различных средах. Особенно интересовали Льюиса два типа молекул – кислоты и основания. Любые взаимодействия атомов, при которых они обмениваются электронами, называются химическими реакциями. В результате химической реакции могут образовываться или распадаться соединения. Кислотно-основные реакции представляют собой яркие и зачастую бурные примеры такого межатомного обмена. Работа Льюиса с кислотами и основаниями значила для науки не больше, чем любые другие исследования, связанные с изучением электронного обмена на субмикроскопическом уровне.

Примерно до 1890 года ученые пробовали кислоты и основания на вкус – языком или окунув в жидкость палец. Разумеется, это не самый безопасный метод, который к тому же не особенно точен. За несколько десятилетий удалось установить, что кислоты, в сущности, являются донорами протонов. Многие кислоты содержат водород. Это простейший элемент, в ядре которого присутствует всего один протон, а вокруг него вращается единственный электрон (вот такое маленькое ядро у водорода). При смешивании кислоты (возьмем, к примеру, соляную кислоту – НС1) с водой кислота расщепляется на ионы Н+ и Cl-. Когда водород теряет единственный электрон, его ядро превращается в «голый» протон Н+. Слабые кислоты, например уксусная, отдают в раствор малое количество протонов. Сильные же кислоты, в частности серная, высвобождают множество протонов.

Льюис считал, что такое понимание кислоты является слишком ограниченным. Действительно, многие вещества проявляют кислотные свойства, но не содержат при этом водорода. Поэтому Льюис взглянул на проблему под иным ракурсом: он обратил внимание не на водород, отдающий электрон, а на хлор, захватывающий эту частицу. Соответственно, он представил кислоту не как донора протонов, а как акцептор электронов. Напротив, основания (к ним относятся такие вещества, как известь или щелок) по своим свойствам противоположны кислотам, и их можно считать донорами электронов. Эти определения не только более универсальны, но и основаны на свойствах электронов. Такая парадигма лучше сочетается с концепцией периодической таблицы, структура которой в значительной степени основана на электронных оболочках элементов.

Льюис сформулировал эту теорию еще в 1920-1930-х годах, но современные ученые продолжают развивать его идеи, создавая все более сильные кислоты. Сила кислоты определяется по pH-шкале. Чем меньше число pH, тем сильнее кислота. В 2005 году химик родом из Новой Зеландии синтезировал карборановую кислоту, основным элементом которой является бор.

Эта кислота имеет значение pH, равное -18. Для сравнения: вода имеет pH = 7, а соляная кислота в наших желудках – pH = 1. Но в соответствии с необычными правилами расчетов, действующими на шкале pH, снижение pH на одну единицу (например, с 4 до 3) соответствует увеличению силы кислоты в десять раз. Таким образом, если сравнить желудочный сок с pH = 1 и карборановую кислоту с pH = -18, оказывается, что карборановая кислота сильнее желудочного сока в десять миллиардов милли

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...