Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Работа выхода электрона из металла




Wp = -eφ

Aвых = eφ

Aвых = eφ' – EF

39. Термоэлектрические явления совокупность физических явлений, обусловленных взаимосвязью между тепловыми и электрическими процессами в металлах и полупроводниках.

Эффект Зеебека

Эффект Пельтье

Эффект Томсона

Эффект Зеебека — явление

возникновения ЭДС в замкнутой электрической цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах.

Эффект Зеебека также иногда называют просто термоэлектрическим эффектом.Эффект Зеебека состоит в том, что в замкнутой цепи, состоящей из разнородных проводников, возникает термо-ЭДС, если места контактов поддерживают при разных температурах. Цепь, которая состоит только из двух различных проводников, называется термоэлементом или термопарой

Эффект Пельтье -

термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, направления и силы протекающего электрического тока:

Q = ПАBIt = (ПB-ПA)It, где

Q — количество выделенного или поглощённого тепла;

I — сила тока;

t — время протекания тока;

П — коэффициент Пельтье, который связан с коэффициентом термо-ЭДС α вторым соотношением Томсона [1] П = αT, где Т — абсолютная температура в K.

Эффект Томсона — одно из термоэлектрических явлений, заключающееся в том, что в однородном неравномерно нагретом проводнике с постоянным током, дополнительно к теплоте, выделяемой в соответствии с законом Джоуля — Ленца, в объёме проводника будет выделяться или поглощаться дополнительная теплота Томсона в зависимости от направления тока..

где — коэффициент Томсона.

1.Электрические заряды. Линейная, поверхностная и объемная плотность зарядов.

Электрический заряд — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в Международной системе единиц (СИ) — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q 1 = q 2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9·109 H, то есть с силой, с которой гравитация Земли притягивала бы предмет с массой порядка 1 миллиона тонн.

Плотность заряда — это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр [Кл/м], в Кулонах на квадратный метр [Кл/м²] и в Кулонах на кубический метр [Кл/м³], соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды. Линейная, поверхностная и объемная плотности заряда, обозначаются обычно функциями, и, соответственно, где — это радиус-вектор.

2.Электрическое поле. Напряженность электрического поля. Принцип суперпозиции. Поле диполя.

Электрическое поле — одна из двух компонент электромагнитного поля, представляющее собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Напряжённость электри́ческого по́ля — векторная физическая величина,характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный точечный заряд, помещенный в данную точку поля, к величине этого заряда : При́нцип суперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Любое сложное движение можно разделить на два и более простых.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.

Электрическим диполемназывается система двух одинаковых по величине, но разноименных точечных зарядов, расстояние между которыми l значительно меньше расстояния до тех точек, в которых определяется поле системы ( ). Здесь называют плечо диполя– вектор, направленный от отрицательного заряда к положительному и численно равный расстоянию между зарядами.

3.Поток вектора напряженности электростатического поля. Теорема Остроградского-Гаусса для электростатического поля вакууме.

Число ли­ний напряженности, пронизывающих единицу площа­ди перпендикулярной им поверхности, должно быть равно модулю вектора . Число силовых линий, про­низы­вающих элементарную площадку dS, называется потоком вектора напряженности dФЕчерез площадку dS. Эта величина считается по формуле dФЕ=ЕdScos(a), где a - угол между вектором нормали к площадке dS и векто­ром . Общая формулировка: Поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.где (СГС) (СИ)

— поток вектора напряжённости электрического поля через замкнутую поверхность .

— полный заряд, содержащийся в объёме, который ограничивает поверхность .

— электрическая постоянная.Данное выражение представляет собой теорему Гаусса в интегральной форме. Замечание: поток вектора напряжённости через поверхность не зависит от распределения заряда (расположения зарядов) внутри поверхности.В дифференциальной форме теорема Гаусса выражается следующим образом: (СГС) (СИ) Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла.

Теорема Гаусса может быть доказана как теорема в электростатике исходя из закона Кулона (см. ниже). Формула однако также верна в электродинамике, хотя в ней она чаще всего не выступает в качестве доказываемой теоремы, а выступает в качестве постулируемого уравнения (в этом смысле и контексте ее логичнее называть законом Гаусса [2].

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...