Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Уравнение прямой, проходящей через две точки

Определение смешанного произведения.

Смешанное произведение определяется для трех векторов, заданных в трехмерном пространстве.

Определение.

Смешанным произведением трех векторов и называется действительное число, равное скалярному произведению векторов и , где - векторное произведение векторов и .

Из определения понятно, почему смешанное произведение часто называют векторно-скалярным произведением.

Смешанное произведение векторов и обычно обозначают . В таких обозначениях по определению смешанного произведения .

Уравнение прямой на плоскости.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и в ней задана прямая линия.

Прямая, как и любая другая геометрическая фигура, состоит из точек. В фиксированной прямоугольной системе координат каждая точка прямой имеет свои координаты – абсциссу и ординату. Так вот зависимость между абсциссой и ординатой каждой точки прямой в фиксированной системе координат, может быть задана уравнением, которое называют уравнением прямой на плоскости.

Другими словами, уравнение прямой на плоскости в прямоугольной системе координат Oxy есть некоторое уравнение с двумя переменными x и y, которое обращается в тождество при подстановке в него координат любой точки этой прямой.

Осталось разобраться с вопросом, какой вид имеет уравнение прямой на плоскости. Ответ на него содержится в следующем пункте статьи. Забегая вперед, отметим, что существуют различные формы записи уравнения прямой, что объясняется спецификой решаемых задач и способом задания прямой линии на плоскости. Итак, приступим к обзору основных видов уравнения прямой линии на плоскости.

Общее уравнение прямой.

 

Вид уравнения прямой в прямоугольной системе координат Oxy на плоскости задает следующая теорема.

Теорема.

Всякое уравнение первой степени с двумя переменными x и y вида , где А, В и С – некоторые действительные числа, причем А и В одновременно не равны нулю, задает прямую линию в прямоугольной системе координат Oxy на плоскости, и всякая прямая на плоскости задается уравнением вида .

Уравнение называется общим уравнением прямой на плоскости.

Поясним смысл теоремы.

Заданному уравнению вида соответствует прямая на плоскости в данной системе координат, а прямой линии на плоскости в данной системе координат соответствует уравнение прямой вида .

Посмотрите на чертеж.

С одной стороны можно сказать, что эта линия определяется общим уравнением прямой вида , так как координаты любой точки изображенной прямой удовлетворяют этому уравнению. С другой стороны, множество точек плоскости, определяемых уравнением , дают нам прямую линию, приведенную на чертеже.

Общее уравнение прямой называется полным, если все числа А, В и С отличны от нуля, в противном случае общее уравнение прямой называется неполным. Неполное уравнение прямой вида определяют прямую, проходящую через начало координат. При А=0 уравнение задает прямую, параллельную оси абсцисс Ox, а при В=0 – параллельную оси ординат Oy.

Таким образом, любую прямую на плоскости в заданной прямоугольной системе координат Oxy можно описать с помощью общего уравнения прямой при некотором наборе значений чисел А, В и С.

Нормальный вектор прямой, заданной общим уравнением прямой вида , имеет координаты .

Все уравнения прямых, которые приведены в следующих пунктах этой статьи, могут быть получены из общего уравнения прямой, а также могут быть обратно приведены к общему уравнению прямой.

Рекомендуем к дальнейшему изучению статью общее уравнение прямой. Там доказана теорема, сформулированная в начале этого пункта статьи, приведены графические иллюстрации, подробно разобраны решения примеров на составление общего уравнения прямой, показан переход от общего уравнения прямой к уравнениям другого вида и обратно, а также рассмотрены другие характерные задачи.

Уравнение прямой, проходящей через две точки

Пусть в пространстве заданы две точки M 1 (x 1, y 1, z 1) и M2 (x 2, y 2, z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.На плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х2 и х = х 1, если х 1 = х2.

Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

5. Уравнение прямой, проходящей через данную точку в данном направлении

Выведем уравнение прямой, проходящей через данную точку A(x1;y1) и имеющей данный угловой коэффициент k. Уравнение этой прямой имеет вид:

1. y=kx+в (5)

Так как искомая прямая проходит через точку A(x1;y1), то координаты этой точки должны удовлетворять уравнению (5):

2. y1=kx1+в (6)

Из уравнения (6) выражаем в=y1-kx1 и подставляем в уравнение (5):

y-y1=k(x-x1)

Это и есть уравнение искомой прямой. Уравнение прямой, проходящей через данную точку A(x1;y1) параллельно оси Oу, будет иметь вид: x=x1

Пример 3. Составить уравнение прямой, проходящей через точку (-3;4) и наклоненную к оси Oх под углом в 135°

Уравнение прямой можно записать в форме (7). Здесь x1=-3, y1=4, k=tg135°=-1

Следовательно, искомое уравнение будет у-4=-1(х+3), или х+у-1=0.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...